Reliable Recommender Systems Research
I have spent considerable effort implementing software and conducting research to help promote reproducibility and reliability in recommender systems research. This has most notably resulted in the LensKit software, an open-source toolkit for recommender systems research. I am still maintaining this software and am active in promoting reproducibility in the RecSys research community. 2021. Statistical Inference: The Missing Piece of RecSys Experiment Reliability Discourse. In Proceedings of the Perspectives on the Evaluation of Recommender Systems Workshop 2021 (RecSys '21). DOI 10.48550/arXiv.2109.06424. arXiv:2109.06424 [cs.IR]. Cited 2 times. Cited 1 time. 2021. Evaluating Recommenders with Distributions. At Proceedings of the RecSys 2021 Workshop on Perspectives on the Evaluation of Recommender Systems (RecSys '21). 2020. Evaluating Stochastic Rankings with Expected Exposure. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20). ACM, pp. 275–284. DOI 10.1145/3340531.3411962. arXiv:2004.13157 [cs.IR]. NSF PAR 10199451. Acceptance rate: 20%. Nominated for Best Long Paper. Cited 89 times. Cited 89 times. 2020. Estimating Error and Bias in Offline Evaluation Results. Short paper in Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (CHIIR '20). ACM, 5 pp. DOI 10.1145/3343413.3378004. arXiv:2001.09455 [cs.IR]. NSF PAR 10146883. Acceptance rate: 47%. Cited 5 times. Cited 7 times. 2020. LensKit for Python: Next-Generation Software for Recommender Systems Experiments. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20, Resource track). ACM, pp. 2999–3006. DOI 10.1145/3340531.3412778. arXiv:1809.03125 [cs.IR]. NSF PAR 10199450. No acceptance rate reported. Cited 32 times. Cited 59* times. 2018. Monte Carlo Estimates of Evaluation Metric Error and Bias. Computer Science Faculty Publications and Presentations 148. Boise State University. Presented at the REVEAL 2018 Workshop on Offline Evaluation for Recommender Systems, a workshop at RecSys 2018. DOI 10.18122/cs_facpubs/148/boisestate. NSF PAR 10074452. Cited 1 time. Cited 1 time. 2018. The Dagstuhl Perspectives Workshop on Performance Modeling and Prediction. SIGIR Forum 52(1) (May 2018), 91–101. DOI 10.1145/3274784.3274789. Cited 16 times. Cited 15 times. 2018. From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences (Dagstuhl Perspectives Workshop 17442). Dagstuhl Manifestos 7(1) (November 2018), 96–139. DOI 10.4230/DagMan.7.1.96. Cited 7 times. Cited 12 times. 2017. Sturgeon and the Cool Kids: Problems with Random Decoys for Top-N Recommender Evaluation. In Proceedings of the 30th International Florida Artificial Intelligence Research Society Conference (Recommender Systems track). AAAI, pp. 639–644. No acceptance rate reported. Cited 8 times. Cited 13 times. 2016. Dependency Injection with Static Analysis and Context-Aware Policy. Journal of Object Technology 15(1) (January 2016), 1:1–31. DOI 10.5381/jot.2016.15.1.a1. Cited 12 times. 2014. Towards Recommender Engineering: Tools and Experiments in Recommender Differences. Ph.D thesis, University of Minnesota. HDL 11299/165307. Cited 5 times. Cited 8 times. 2014. Building Open-Source Tools for Reproducible Research and Education. At Sharing, Re-use, and Circulation of Resources in Cooperative Scientific Work, a workshop at CSCW 2014. 2011. Rethinking The Recommender Research Ecosystem: Reproducibility, Openness, and LensKit. In Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys '11). ACM, pp. 133–140. DOI 10.1145/2043932.2043958. Acceptance rate: 27% (20% for oral presentation, which this received). Cited 179 times. Cited 215 times. 2011. LensKit: A Modular Recommender Framework. Demo recorded in Proceedings of the 5th ACM Conference on Recommender Systems (RecSys '11). ACM, pp. 349-350. DOI 10.1145/2043932.2044001. Cited 1 time. Cited 42 times. 2011. RecBench: Benchmarks for Evaluating Performance of Recommender System Architectures. Proceedings of the VLDB Endowment 4(11) (July 2011), 911–920. Acceptance rate: 18%. Cited 11 times. Cited 21 times.Funding
Publications