
1

Lecture Notes on Recommender Systems
Michael D. Ekstrand, Boise State University

These notes summarize key points and definitions from CS 538, Recommender Systems and Online
Personalization. Due to my improvisational teaching style in this class, these notes are sparse, but
I hope they contain main of the most important points.

Table of Contents
Resources .. 2

Recommendation Fundamentals .. 3

Mathematical Preliminaries .. 5

Non-Personalized Recommendation ... 6

Content-Based Filtering ... 8

Nearest-Neighbor Collaborative Filtering .. 10

Matrix Factorization ... 12

Evaluation: Introduction and Fundamentals .. 16

Offline Evaluation .. 17

Online Evaluation .. 25

Learning to Rank ... 27

Copyright 2019 Michael D. Ekstrand. All rights reserved. Do not redistribute.

If you find errors in this material, please e-mail michaelekstrand@boisestate.edu.

mailto:michaelekstrand@boisestate.edu

2

Resources
These notes are largely in outline format. For additional study, I recommend the following:

Kim Falk. 2019. Practical Recommender Systems. Manning, 432pp. isbn 9781617292705.

Michael D. Ekstrand, John T. Riedl, and Joseph A. Konstan. 2011. Collaborative Filtering
Recommender Systems. Foundations and Trends® in Human-Computer Interaction 4(2) (Feb-
ruary 2011), 81–173. doi 10.1561/1100000009.

Throughout these notes, I use the notation documented here:

Michael D. Ekstrand and Joseph A. Konstan. 2019. Recommender Systems Notation: Pro-
posed Common Notation for Teaching and Research. Computer Science Faculty Publica-
tions and Presentations 177. Boise State University. arXiv:1902.01348 [cs.IR].
doi 10.18122/cs_facpubs/177/boisestate.

https://dx.doi.org/10.1561/1100000009
https://arxiv.org/abs/1902.01348
https://dx.doi.org/10.18122/cs_facpubs/177/boisestate

3

Recommendation Fundamentals
What Is a Recommender System?
A recommender system is an algorithmic tool that recommends items to users.

Recommendations in Context
There are two ways that we think of context in recommender systems:

 How are the recommendations situated in the user’s workflow? For example, presenting
recommendations for additional items when the user is preparing to check out and com-
plete their purchases is different from recommending related items on a product detail
page.

 What are the user’s particular situational needs when the recommendations are accessed
or provided? This includes things like time, place, and who they are with.

Recommendation Tasks
There are many things we can use recommender systems for. Two key tasks:

 Predict – estimate how much will a given user like a particular item
 Recommend – provide one or more items for a user to (possibly) consume

Classical top-N recommendation computes recommendations by first predicting, and then rec-
ommending the items with the highest predicted preference.

This is not the only possible modality.

 Set recommenders produce a (possibly unranked) collection of items, that may be opti-
mized for criteria beyond just “top prediction”

 Items with the highest predictions do not necessarily make the best set of recommenda-
tions.

 Streaming radio such as Pandora just plays the next item.

Recommendation Inputs
There are many different types of recommendation inputs:

 Explicit feedback – data provided by the user for the purpose of communicating prefer-
ence, such as star ratings and thumbs up/down

 Implicit feedback – data gathered from other interactions that can be used to infer pref-
erence, such as purchases and clicks.

4

We can also reason about recommendation inputs based on the time at which they were provided:

 Memory ratings are provided sometime after the user experiences the item, and are
based on the user’s memory.

 Consumption ratings are provided when the user is experiencing the item.
 Expectation ratings are provided before the user has experienced the item, and is based

on their expectation of their preference.

Any of these can be implicit or explicit.

Relation to Psychology
Psychology of preference gives us two major theories of preference. Roughly:

 Articulated values holds that we have (relatively stable) preferences for particular items,
and when we express a preference we map the preference to the desired scale.

 Basic values holds that we have values that we place on different characteristics, along
with memory of the characteristics of items; when we express a preference, we combine
our memory of the item with our values for its characteristics, possibly adjusted for the
current context, and map it to the desired scale.

Mathematical Representations
See the Notation paper (in Resources) for details on the mathematical notation.

Overview of Recommendation – Early Perspective
This paper covers a great deal of ground in recommender systems, anticipating many important
lines of research that wouldn’t be fully developed for another 10–15 years.

William Hill, Larry Stead, Mark Rosenstein, and George Furnas. 1995. Recommending and
evaluating choices in a virtual community of use. In CHI ’95, 194–201. doi
10.1145/223904.223929

https://doi.org/10.1145/223904.223929

5

Mathematical Preliminaries
This section briefly reviews some of the mathematics required in this course, to supplement the
notation document.

Linear Algebra
A vector �⃗� ∈ ℝ𝑛 = 𝑥1, … , 𝑥𝑛 is an array of numbers.

A matrix 𝐴 ∈ ℝ𝑚×𝑛 is an 𝑚 × 𝑛 array of numbers; in a programming language, we would call
this array two-dimensional, but this terminology gets confused with using 𝑛 to describe the di-
mensionality of a vector so we will avoid it. The item at row 𝑖 and column 𝑗 of 𝐴 is denoted 𝑎𝑖𝑗.
The rows and columns of a matrix are vectors.

The dot product �⃗� ⋅ �⃗� = ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 is the sum of the elementwise products of two vectors of the

same dimensionality.

The Euclidean norm ‖�⃗�‖2 is the length of the vector; it is defined as √∑ 𝑥𝑖
2𝑛

𝑖=1 , the square root of

the sum of the squares. The Frobenius norm ‖𝐴‖𝐹 of a matrix is the same, defined as

√∑ ∑ 𝑎𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1 .

The cosine between two vectors is cos(�⃗�, �⃗�) =
�⃗�⋅�⃗⃗�

‖�⃗�‖2‖�⃗⃗�‖2
 is the cosine of the angle between the two

vectors, and is a measure of similarity between items represented by vectors.

6

Non-Personalized Recommendation
Recommendations do not have to be personalized.

Means and the Bias Model
The simplest non-personalized prediction is the average rating:

𝑠(𝑖) = �̅�𝑖 =
∑ 𝑟𝑢𝑖𝑟𝑢𝑖∈𝑅𝑖

|𝑅𝑖|

Different users have different rating scales, so we can instead compute the personalized mean or
bias model:

𝑠(𝑖|𝑢) = 𝑏𝑢𝑖 = �̅� + 𝑏𝑖 + 𝑏𝑢

�̅� =
∑ 𝑟𝑢𝑖𝑟𝑢𝑖∈𝑅

|𝑅|

𝑏𝑖 =
∑ (𝑟𝑢𝑖 − �̅�)𝑟𝑢𝑖∈𝑅𝑖

|𝑅𝑖| + 𝛼

𝑏𝑢 =
∑ (𝑟𝑢𝑖 − 𝑏𝑖 − �̅�)𝑟𝑢𝑖∈𝑅𝑢

|𝑅𝑢| + 𝛼

If we want to score for a user or item we haven’t seen before, then we can allow 𝑏𝑖 or 𝑏𝑢 to be 0.

The damping parameter 𝛼 is a shrinking or regularization parameter to discourage the model
from learning extreme average opinions based on little data. It is equivalent to assuming that
each user or item has 𝛼 average ratings; actual ratings will eventually pull this away.

Popularity
The simplest non-personalized recommendation is the Most Popular Item recommendation. This
just recommends items rated or purchased by the most users.

If we want to score items using popularity, we can use the raw number of users; however, it is
often more useful to use the quantile or the popularity rank: the most popular item is 1, least popular
is 0.

We can also use popularity to estimate probabilities – if we know nothing else, the probability
that a user purchased an item is Pr[𝑖] ∝ |𝑈𝑖|.

Time Decay: Hacker News and Reddit
See “How the Hacker News ranking algorithm works”.

https://medium.com/hacking-and-gonzo/how-hacker-news-ranking-algorithm-works-1d9b0cf2c08d

7

Contextualization: Association Rules
We can make recommendations more responsive by contextualizing them to items that the user
is browsing. One way to do this is through association rules; if the user is browsing item 𝑗 (called
the target or context item), then we can talk about 𝑠(𝑖|𝑗). The simplest way to do this is the condi-
tional probability 𝑠(𝑖|𝑗) = Pr[𝑖|𝑗]. This probability notation is shorthand for:

Pr[𝑖 ∈ 𝐼𝑢|𝑗 ∈ 𝐼𝑢] =
|𝑈𝑗 ∩ 𝑈𝑖|

|𝑈𝑗|

The formula for the empirical estimate of the conditional probability can be derived by algebra
from the definition of conditional probability. We can then produce recommendations by select-
ing items with the highest conditional probability given the context item.

Philosophical Note. If it bothers you that we are using probability notation to discuss historical
data, there are two different ways you can interpret the probabilistic statement to describe a ran-
dom process; for this particular problem they result in equivalent mathematics:

 If new, unseen user comes to the site and purchases item 𝑗, what is the probability they will
also purchase item 𝑖? In this case, the probability is taken over the process of randomly gen-
erating new users.

 If we randomly draw a user from our database, and they have purchased 𝑗, what is the prob-
ability they have also purchased 𝑖? In this case, the probability is taken over the process of
drawing users uniformly at random from the set of users in the database.

Question. What is the drawback to this method? What happens when 𝑖 is very popular?

We can make conditional probability better-behaved by using lift. The lift metric is no longer a
probability, but is computed using one:

𝑠(𝑖|𝑗) = Lift(𝑖, 𝑗) =
Pr[𝑖|𝑗]

Pr[𝑖]

This answers the question “Given that the user has purchased 𝑗, how much does that increase our
expectation that they will purchase 𝑖?”.

8

Content-Based Filtering
Moving beyond basic popularity and probability statistics, we can look at the content of the items
that we are thinking about recommending.

Types and Sources of Content Information
There are many possible sources of content. Some of them include:

 Textual item content (e.g. the text of a news article or research paper)
 Item metadata (title, authors, tags, dates, abstract or synopsis)
 Reviews (text about an item, such as movie reviews or reviews on a site like Amazon)
 Audio or visual content (e.g. the actual audio or video data for a song or movie)
 Transcripts and subtitles (text renderings of audio or video content)

Methods
Each of these types of data can be processed by techniques from relevant specialties of computer
science, such as computer vision (for image analysis) and natural language processing (for text
content). Information retrieval techniques are very useful for doing content-based recommen-
dation with textual data.

Bag of Words and TF-IDF
One simple approach for processing textual is to use a bag of words approach, where we represent
the text by the words it contains, usually just counting how often each word appears. We can do
this with a pipeline like the following:

1. Tokenize the text to split it into individual words.
2. Normalize words so that we don’t have multiple variants of the same word (e.g. convert to

lowercase) (you don’t always want to do this, it depends on your application!)
3. Remove stop words (e.g. ‘the’), because they do not provide signal in bag-of-words settings.

Again, you don’t always want to do this.
4. Stem or lemmatize words to unify different tenses of the same word. Again, whether you

want to do this depends on your application.
5. Count word occurrences to summarize each document as a term vector.

The result of this process is that an item or document is represented by a vector mapping words
to the number of times those words appear. This is our term frequency vector, and it looks like this:

9

Word Count
apple 10
pizza 5
fish 7

We can denote the number of times word 𝑤 appears in item 𝑖 with 𝑦𝑖𝑤, and an item’s term vector
�⃗�𝑖 is the vector of such words (if 𝑤 does not appear in item 𝑖, then 𝑦𝑖𝑤 = 0; we often store these
vectors sparsely, so we do not store the 0’s). We also want to know the number of items that con-
tain 𝑤 at least once: 𝑑𝑤 = |{𝑖: 𝑦𝑖𝑤 > 0}|; this is called the document frequency of each term.

With these values, we can now compute the TF-IDF (term frequency – inverse document fre-
quency) vector �̂⃗�𝑖 for each item with the following formula for its elements:

�̂�𝑖𝑤 = 𝑦𝑖𝑤 log
|𝐼|

𝑑𝑤

Question. Why do we do this? What happens to this equation if 𝑑𝑤 increases but 𝑦𝑖𝑤 remains con-
stant?

We can then compare two items by taking the cosine of their vectors:

𝑠(𝑖|𝑗) = cos(�̂⃗�𝑖, �̂⃗�𝑗) =
�̂⃗�𝑖 ⋅ �̂⃗�𝑗

‖�̂⃗�𝑖‖2
‖�̂⃗�𝑗‖

2

10

Nearest-Neighbor Collaborative Filtering
The core idea of collaborative filtering is to ignore the actual content of items and mine user-item
interactions in order to predict unknown preferences. This means that the method does not de-
pend on item characteristics or representations.

Item-based k-NN
We start with item-based nearest-neighbor collaborative filtering: to predict a user’s preference for
an item, we look at similar items they have rated in the past.

In order to do this, we need a notion of ‘similarity’ between items. One way is to compute the
cosine between items’ rating vectors: the vectors of users’ ratings for those items. If we define �̂�𝑖
such that �̂�𝑢𝑖 = 𝑟𝑢𝑖 − �̅�𝑖, then we can define the similarity 𝑤𝑖𝑗 between 𝑖 and 𝑗:

𝑤𝑖𝑗 = cos(�̂�𝑖, �̂�𝑗)

Using these similarities, we can find a neighborhood 𝑁(𝑖|𝑢) ⊆ 𝐼𝑢, the 𝑘 items most similar to 𝑖
that have been rated by 𝑢, and use this to score:

𝑠(𝑖|𝑢) =
∑ 𝑤𝑖𝑗(𝑟𝑢𝑗 − �̅�𝑗)𝑗∈𝑁(𝑖|𝑢)

∑ |𝑤𝑖𝑗|𝑗∈𝑁(𝑖|𝑢)

+ �̅�𝑖

That is, our prediction of user 𝑢’s rating for item 𝑖 is the weighted average of the user’s ratings or
other items 𝑗.

Question. Why do we limit the number of neighbors? What happens if we use too many?

Unary or Binary Data
If 𝑅 is a binary or unary matrix (values or 0 or 1), or even a count matrix, mean-centering (the �̂�𝑢𝑖
normalization) and weighted average are not meaningful concepts. Therefore we either user raw
rating vectors 𝑟𝑖 or some other normalization of the matrix 𝑅, and can do a sum of similarities:

𝑠(𝑖|𝑢) = ∑ 𝑤𝑖𝑗

𝑗∈𝑁(𝑖|𝑢)

Negative Similarities
We often limit similarities to only consider item pairs with similarities over some threshold 𝑤< .

11

Question. Why? If no one likes 𝑖, what will generally be true about 𝑤𝑖𝑗?

Question. How does the cosine above relate to the Pearson correlation?

Key Papers
Item-based k-NN is described in:

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based Collabo-
rative Filtering Recommendation Algorithms. In Proceedings of the 10th International Con-
ference on World Wide Web (WWW ’01), 285–295.

Mukund Deshpande and George Karypis. 2004. Item-based top-N Recommendation Algo-
rithms. ACM Transactions on Information Systems 22, 1 (January 2004), 143–177.

User-based k-NN
An older method for collaborative filtering is to look at similar users instead of similar items. To
score for a user, we will look at users 𝑁(𝑢|𝑖) ⊆ 𝑈𝑖 who have agreed with our target user’s ratings
in the past, and recommend things that they liked:

𝑠(𝑖|𝑢) =
∑ 𝑤𝑢𝑣(𝑟𝑣𝑖 − �̅�𝑣)𝑣∈𝑁(𝑢|𝑖)

∑ |𝑤𝑢𝑣|𝑣∈𝑁(𝑢|𝑖)

+ �̅�𝑢

Key Paper
User-based k-NN is described in:

Jonathan Herlocker, Joseph A. Konstan, and John Riedl. 2002. An Empirical Analysis of De-
sign Choices in Neighborhood-Based Collaborative Filtering Algorithms. Inf. Retr. 5, 4
(October 2002), 287–310.

12

Matrix Factorization
One very common way of scoring items in collaborative filtering is matrix factorization.1 The idea
of matrix factorization is to decompose the ratings matrix 𝑅 into two matrices, one for users and
one for items, that represent users and items in a common lower-dimensional vector space.
These representations are sometimes called embeddings. They take the original user or item rating
vectors, in item or user space respectively (e.g. a user vector 𝑟𝑢 is in ℝ|𝐼|), and map them into into
a 𝑘-dimensional space; users and items are both represented by vectors in ℝ𝑘, where 𝑘 ≪ |𝐼|.

This lower-dimensional space is called a latent feature space, and the dimensions are called latent
features. The idea is that we can represent user preferences for items by learning user preferences
for certain (indescribable) features possessed by items, and similarly we can represent items by
their expression of those features. User preference for items is then estimated by combining
user-feature preference with item-feature expression.

For a general survey of explicit-feedback matrix factorization, see:

Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for Recom-
mender Systems. Computer 42, 8 (August 2009), 30–37. doi 10.1109/MC.2009.263

Singular Value Decomposition
One way to do this is through the singular value decomposition:

�̂� ≈ 𝑃Σ𝑄T

In this matrix, 𝑃 ∈ ℝ|𝑈|×𝑘 is a matrix of user vectors and 𝑄 ∈ ℝ|𝐼|×𝑘 is a matrix of item vectors.
Σ is a 𝑘 × 𝑘 diagonal matrix of singular values; these represent how relatively important each di-
mension in the latent feature space is. We truncate the decomposition by only keeping the 𝑘 larg-
est singular values and their corresponding columns in the user and item matrices.

In order to compute the singular value decomposition, we need to first prepare �̂� to set up a prob-
lem that can be solved by an SVD solver. The major problem to solve is that the SVD is only defined
over complete matrices, so we need to do something with the (many) missing values of 𝑅. A good
way to handle this is to normalize the observed values by subtracting a suitable mean; the missing
values can then be treated as 0 (now a neutral value, instead of a out-of-range low value) and a

1 Authors differ in whether they consider matrix factorization to be collaborative filtering. I do, because in the form
we are discussing it, it only uses the ratings matrix; other authors only apply the term ‘collaborative filtering’ to
neighborhood methods.

http://dx.doi.org/10.1109/MC.2009.263

13

normal sparse SVD solver, such as SciPy or Matlab’s function. If we subtract the item
mean, so �̂�𝑢𝑖 = 𝑟𝑢𝑖 − �̅�𝑖, then the SVD corresponds to the principle component analysis. Another rea-
sonable decision is to subtract the bias model �̂�𝑢𝑖 = 𝑟𝑢𝑖 − 𝑏𝑢𝑖.

With this decomposition, we can score an item by recombining features (�⃗� is a vector of the di-
agonal of Σ, the singular values):

𝑠(𝑖|𝑢) = 𝑏𝑢𝑖 + �⃗�𝑢 ⋅ �⃗� ⋅ �⃗�𝑖

= 𝑏𝑢𝑖 + ∑ 𝑝𝑢𝑓𝜎𝑓𝑞𝑖𝑓

𝑘

𝑓=1

Key Paper
Badrul M. Sarwar, G. Karypis, Joseph Konstan, and John Riedl. 2002. Incremental Singular

Value Decomposition Algorithms for Highly Scaleable Recommender Systems. In Pro-
ceedings of the Fifth International Conference on Computer and Information Science (ICCIT
2002).

Approximating SVD through Alternating Least Squares
The traditional SVD solver relies on all the values, and makes the assumption that missing values
are ‘neutral’ (for whatever definition of neutral is implied by our choice of normalizing mean).
We can bypass both of these issues through approximation procedures that learn 𝑃 and 𝑄 matri-
ces that minimize the error in predicting the ratings that we have. We still normalize before
learning, but we no longer assuming missing values are actually 0.

Many practical matrix factorization models forgo the distinct Σ matrix, resulting in the following
model (𝐵 is the matrix of bias model values):

𝑅 ≈ 𝐵 + 𝑃𝑄T

We can find good user and item matrices by solving the following optimization problem:

argmin
𝑃,𝑄

‖𝑅 − 𝐵 − 𝑃𝑄T‖𝐹
2

‖ ⋅ ‖𝐹 is the Frobenius norm, a matrix generalization of the 𝐿2 norm (or Euclidean distance); the
square root of the sum of the squares of the inner matrix. The minimization is therefore finding
𝑃 and 𝑄 that minimize the squared error of predicting 𝑟𝑢𝑖 with 𝑠(𝑖|𝑢) = 𝑏𝑢𝑖 + �⃗�𝑢�⃗�𝑖 . We will

14

augment this with a regularization term and per-user / per-item weightings to improve the solu-
tion quality and prevent overfitting. The regularization term makes the problem look like the fol-
lowing:

argmin
𝑃,𝑄

{‖𝑅 − 𝐵 − 𝑃𝑄T‖𝐹
2 + 𝜆(‖𝑃‖𝐹

2 + ‖𝑄‖𝐹
2)}

We can solve this problem by alternating between solving for 𝑃 and solving for 𝑄, and each time
solving a least squares problem. That is, for a given 𝑄, we can find 𝑃 that minimizes squared
prediction error, and we can do the same to find 𝑄 given 𝑃. The method gets its name because
we alternate between the user and item matrices, finding solving a least squares problem for each
in turn. The following algorithm describes this, using the normal equations solution to the least
squares problem:

𝑄 ← random |𝐼| × 𝑘 matrix
until done:
 solve (𝑄𝐼𝑢

𝑇 𝑄𝐼𝑢
+ 𝜆1̅|𝑅𝑢|)�⃗�𝑢 = 𝑄𝐼𝑢

𝑇 𝑟𝑢 for �⃗�𝑢 for each 𝑢 ∈ 𝑈 (𝑃-step)
 solve (𝑃𝑈𝑖

𝑇 𝑃𝑈𝑖
+ 𝜆1̅|𝑅𝑖|)�⃗�𝑖 = 𝑃𝑈𝑖

𝑇 𝑟𝑖 for �⃗�𝑖 for each 𝑖 ∈ 𝐼 (𝑄-step)

‘Done’ often means a fixed number of iterations, such as 15 or 20. The linear systems can be solved
using the Cholesky decomposition. Since users are independent of each other, as are items, the
𝑃-step and 𝑄-step can each be parallelized. This makes the method quite efficient in practice.

Key Paper
Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. 2008. Large-Scale Par-

allel Collaborative Filtering for the Netflix Prize. In Algorithmic Aspects in Information and
Management, 337–348. doi 10.1007/978-3-540-68880-8_32

Approximate SVD through Featurewise Stochastic Gradient Descent (FunkSVD)
One of the earliest approximate SVD algorithms for recommendation is the FunkSVD algorithm.
This algorithm minimizes the squared error by using stochastic gradient descent to optimize la-
tent features one at a time. Its model — 𝑅 ≈ 𝐵 + 𝑃𝑄T — is identical to the one used in ALS, but
the optimization technique used for estimating 𝑃 and 𝑄 is different. Again, though, it solves the
regularized minimization problem (𝜆 is the strength of the regaulrization):

argmin
𝑃,𝑄

{‖𝑅 − 𝐵 − 𝑃𝑄T‖𝐹
2 + 𝜆(‖𝑃‖𝐹

2 + ‖𝑄‖𝐹
2)}

http://dx.doi.org/10.1007/978-3-540-68880-8_32
https://sifter.org/simon/journal/20061211.html

15

The heart of FunkSVD is the update rule: given a rating 𝑟𝑢𝑖 and prediction 𝑠(𝑖|𝑢) = 𝑏𝑢𝑖 + �⃗�𝑢 ⋅ �⃗�𝑖,
we can update 𝑝𝑢𝑓 and 𝑞𝑖𝑓 by:

𝜖𝑢𝑖 = 𝑟𝑢𝑖 − 𝑏𝑢𝑖 − �⃗�𝑢 ⋅ �⃗�𝑖

𝑝𝑢𝑓
′ = 𝑝𝑢𝑓 + 𝜂(𝑞𝑖𝑓𝜖𝑢𝑖 − 𝜆𝑝𝑢𝑓)

𝑞𝑖𝑓
′ = 𝑞𝑖𝑓 + 𝜂(𝑝𝑢𝑓𝜖𝑢𝑖 − 𝜆𝑞𝑖𝑓)

𝜂 is the learning rate, a small value (e.g. 0.001) that controls how quickly the algorithm moves
through the search space. If the learning rate is too small, it will be very slow; if it is too large, it
will jump around the search space and have difficulty converging. 𝜆 is the regularization
strength, controlling how much the optimization process penalizes ‘strong beliefs’ (large values
for user or item feature affinity/relevance).

These rules are obtained by taking the derivative of the error with respect to each parameter to
optimize:

𝜕

𝜕𝑝𝑢𝑓
𝜖𝑢𝑖

2 =
𝜕

𝜕𝑝𝑢𝑓
(𝑟𝑢𝑖 − 𝑏𝑢𝑖 − ∑ 𝑝𝑢𝑓′𝑞𝑖𝑓′

𝑓′

)

2

= 2𝑞𝑖𝑓𝜖𝑢𝑖

The derivative with respect to 𝑞𝑖𝑓 is equivalent. These derivatives (forming the gradient of gradi-
ent descent) result in the following algorithm:

𝑄 ← 0.1|𝐼|×𝑘

𝑃 ← 0.1|𝑈|×𝑘
for 𝑓 ∈ 1 … 𝑘:
 until done (e.g. 100 iterations):
 for 𝑟𝑢𝑖 ∈ 𝑅:
 𝜖𝑢𝑖 ← 𝑟𝑢𝑖 − 𝑏𝑢𝑖 − �⃗�𝑢 ⋅ �⃗�𝑖
 𝑝𝑢𝑓 ← 𝑝𝑢𝑓 + 𝜂(𝑞𝑖𝑓𝜖𝑢𝑖 − 𝜆𝑝𝑢𝑓)
 𝑞𝑖𝑓 ← 𝑞𝑖𝑓 + 𝜂(𝑝𝑢𝑓𝜖𝑢𝑖 − 𝜆𝑞𝑖𝑓)

16

Evaluation: Introduction and Fundamentals
How do we know whether these tools are any good?

Evaluation techniques broadly divide into three categories:

 Offline evaluations using existing data sets and experimental protocols from machine
learning and information retrieval.

 Online experiments (often in the form of A/B tests) measuring user response to deployed
recommender algorithms or interfaces.

 User studies gathering explicit user feedback on the recommendations and/or their sur-
rounding user experience.

What is a Good Recommendation?
It depends on your context and time scale.

 Drives more sales
 Increases user satisfaction
 Increases lifetime customer value
 Meets user information needs
 Promotes social cohesion

17

Offline Evaluation
Offline evaluation protocols are derived from information retrieval and machine learning.

Note: the purpose of offline evaluation is to estimate the recommender’s likely effects on future
user behavior or satisfaction. An evaluation strategy is only as good as its ability to assess whether
a recommender will achieve its desired goals when deployed in production.

Evaluation Structure

We do the following:

1. Split the data into training and test data.
2. Train the recommender model on the training data.
3. Generate recommendations or predictions for the users or user-item pairs in the test

data.
4. Compare the recommendations or predictions with the test data to measure accuracy.

Sometimes we do this multiple times – a technique called cross-validation – in order to obtain
more robust estimates.

Splitting Data
In classical supervised learning settings, we split data for evaluation or cross-validation simply
by partitioning the instances into different test sets. In recommendation, however, it is not so
simple. In particular, the most obvious instances (ratings) are not independent, but rather are
grouped by user (and item). If we just partition ratings, we run into some possible problems:

 A user with few ratings may have no training ratings, because all their ratings are selected
for the test set.

18

 Users with many ratings will show up in the test set more often, weighting the evaluation
towards performing well for them.

 Likewise, items with many ratings will also show up in the test set more often.

There are therefore a few different approaches:

 Rating-based splitting works like supervised ML splitting, and has all of the above prob-
lems.

 User-based splitting considers each user and prepares test data for them. There are sev-
eral ways to do this, including hold-one-out (each user gets one test rating), fractional holdout
where a fraction of each user’s ratings are put in the test data, and hold-N-out, where a
fixed number of each user’s ratings are in the test data. The training data consists of all
other ratings. If this is done repeatedly, as in cross-validation, we partition the users into
disjoint sets. For each set of users, the test data consists of the test items for those users,
and the training data consists of the remaining items for those users plus all items from
the other users in the data set.

 Item-based splitting works like user-based splitting but operates on items instead of us-
ers. It is not very common, but when done with hold-N-out, it can be useful for controlling
for the problem of popularity bias by making each item be a ‘correct’ answer the same
number of times regardless of its popularity.

Notation
In describing these metrics, we will use the following notation:

𝐿𝑢 A recommendation list for user 𝑢

𝑅𝑢
test The test ratings for user 𝑢

𝐼𝑢
test The test items for user 𝑢

𝐼𝑢
train The training items for user 𝑢

𝐼𝑢
test+ The items designated as relevant in user 𝑢’s test data. When working with unary or

interaction count data (e.g. records of clicks, purchases, or plays), this is typically
all items for which we have data for the user. When using rating data, this is either
all rated items (to simulate ‘purchases’ or ‘views’), or all items the user ‘likes’ (gave
a high rating to, i.e. 𝐼𝑢

test+ = {𝑖 ∈ 𝐼𝑢
test: 𝑟𝑢𝑖 ≥ 3}).

19

𝐼𝑢
test− The items designated as irrelevant in user 𝑢 ’s test data. When using items with

high ratings as relevant, then this is the items with low ratings. Sometimes this is
empty, e.g. when we are treating all items the user purchased as relevant.

In addition, most evaluation protocols consider the items for which no relevance data is known
(𝐼 ∖ 𝐼𝑢

test ∖ 𝐼𝑢
train) as irrelevant.

Measuring Predictive Accuracy
The easiest thing to measure in an offline evaluation is prediction accuracy: do the recommendation
algorithm’s predictions or scores match user-provided ratings in the test data?

Root Mean Squared Error
The typical way to measure predictive accuracy is through root mean squared error or RMSE. RMSE
is computed as follows, where 𝑅test is the set of test ratings:

RMSE(𝑅test, 𝑠) = √
∑ (𝑟𝑢𝑖 − 𝑠(𝑖|𝑢))

2
𝑟𝑢𝑖∈𝑅test

|𝑅test|

When we compute RMSE over all of 𝑅test, we get a global RMSE. We can also compute RMSE per
user and average those results (𝑅𝑢

test is the test ratings for user 𝑢):

UserRMSE(𝑅test, 𝑠) =
∑ RMSE(𝑅𝑢

test, 𝑠)𝑢∈𝑈test

|𝑈test|

Question. What are the effects of computing one of these instead of the other?

Mean Absolute Error
We can also compute prediction accuracy using the mean absolute error:

MAE(𝑅test, 𝑠) =
∑ |𝑟𝑢𝑖 − 𝑠(𝑖|𝑢)|𝑟𝑢𝑖∈𝑅test

|𝑅test|

Question. What does RMSE do in terms of handling errors that MAE does not?

Measuring Recommendation Accuracy

20

We call them recommender systems, not rating prediction systems, so we might want to measure how
they do at recommending. In an offline setting, this is usually done via ‘top-N’ metrics borrowed
from machine learning and information retrieval.

The basic setup is this:

1. For each test user, build a candidate set containing the test items and zero or more decoy
items. The most common candidate set is ‘all items the user did not rate in the training
data’, (𝐼𝑢

cand = 𝐼 ∖ 𝐼𝑢
train).

2. Generate a recommendation list 𝐿 of size 𝑁 from the candidate set for each user.
3. Compare recommendations with the test data to compute a recommendation score.

Different metrics have different requirements from the test data, and different ways of inter-
preting the data available. Some require simply judgements of ‘relevant’ and ‘not relevant’; others
take advantage of relative ordering between items; others use a utility value.

Precision
Precision measures how good the recommender is at making its recommendations be things the
user likes. It is computed as follows:

P@N(𝐿) =
|𝐿 ∩ 𝐼𝑢

test+|

|𝐿|

This answers the question ‘of the recommended items, what fraction are known to be relevant?’

Recall and Hit Rate
Recall measures how good the recommender is at finding the items that the user has liked. It is
computed as follows:

R@N(𝐿) =
|𝐿 ∩ 𝐼𝑢

test|

𝐼𝑢
test+

This answers the question ‘of the items known to be relevant to the user, what fraction are rec-
ommended?’

When |𝐼𝑢
test+| > |𝐿|, there is not an established practice. This is not a problem in most recom-

mendation evaluation protocols.

Hit rate is effectively binarized recall: 1 if the list contains at least one relevant item, and 0 other-
wise.

21

Mean Reciprocal Rank
The reciprocal rank measures where the first relevant item appears in the list. It operationalizes a
browsing model where the user scans the list from top to bottom and stops when they reach the
first relevant or interesting item, and measures the value of the recommendations in such a
model. It is computed as:

RR(𝐿) =
1

𝑘

MRR = ∑ RR(𝐿𝑢)

𝑢

Where 𝑘 is the rank of the first relevant item.

Discounted Cumulative Gain
Cumulative gain metrics attempt to estimate the ‘gain’ (or utility) of a recommendation list, prem-
ised on the idea that relevant items provide more utility if they are higher on the list. Given a
rating or utility value 𝑟𝑢𝑖 (assumed to be 0 for unknown items), we can compute the discounted
cumulative gain of list as follows:

DCG(𝐿) = ∑
𝑟𝑢𝑖𝑘

disc(𝑘)

𝑁

𝑘=1

disc(𝑘) = log2 max{𝑘, 2}

The max{𝑘, 2} operation is to prevent division by zero for the first item. The discount function
disc(𝑘) can be replaced with other discounts, such as a half-life decay function. Base-2 logarith-
mic discounting is the most common in current practice.

The DCG on its own, however, is not comparable between users. Users with different numbers
of relevant items, or different total rating values, will have different maximum ratings; therefore,
we compute normalized discounted cumulative gain (nDCG) to correct fot this:

nDCG(𝐿𝑢) =
DCG(𝐿𝑢)

DCG(𝐿𝑢
ideal)

𝐿𝑢
ideal is the ideal recommendation list for 𝑢: the list that has all the items 𝑢 likes at the top, in

decreasing order of rating or utility. If |𝐼𝑢
test+| > 𝑁, this list is truncated to the N ‘best’ items. The

resulting metric approximates the fraction of possible utility that a given list or ranking achieves.

22

Receiver Operating Characteristic and AUC
Another way to characterize the accuracy of a recommender is through the receiver operating char-
acteristic. This is an analysis of the relationship of the true positive rate to the false positive rate.
One way to think of it is this: as we go down the recommendation list, do we relevant or irrelevant
items more quickly?

ROC curves are easy to compute for a single list or set of scores: order the results by decreasing
threshold; for each threshold, compute the TPR and the FPR, and use that as a point in the plot.

Gunawardana and Shani (2009) identify the different ways of computing for multiple rankings,
which is the common case for recommender evaluation as each user has their own recommenda-
tion list. We can either compute TPR and FPR at each length for each user, and average them by
lengths; or we can compute a curve for each user, and average the curves. (There is also a third
global method).

Question. What assumptions do each of these reflect?

With the ROC curve, we can also compute the area under the curve. A larger area corresponds to
increased ability to discern between different lists. The area under the ROC curve is also equiva-
lent to the probability of putting two items in the right order: if you randomly select two different
items from the data set, the probability that the recommender put the relevant one before the
irrelevant one is AUC.

Scikit-Learn provides ROC and AUC methods.

Key Papers
Asela Gunawardana and Guy Shani. 2009. A Survey of Accuracy Evaluation Metrics of Rec-

ommendation Tasks. J. Mach. Learn. Res. 10, (December 2009), 2935–2962.
http://www.jmlr.org/papers/v10/gunawardana09a.html

Other Offline Metrics
Diversity is not the only thing that we can measure by running a recommender and reviewing its
output. We can also look at things such as the diversity and novelty of recommendations.

Novelty
True novelty is difficult to measure, because we do not know what items the user is not familiar
with. We can approximate it, however, using popularity statistics: more popular items are more
likely to be familiar to the user.

http://www.jmlr.org/papers/v10/gunawardana09a.html

23

One way to make this computationally useful is to rank items by popularity, with the most popular
item being 1; nov(𝑖) = rank(𝑖).

We can also use the number of items, e.g. nov(𝑖) ∝ |𝑈𝑖|
−1.

Diversity
Diversity can be measured using some notion of similarity or distance between items. This is
usually done with some external reference point or content data, such as tags or categories.

If we have a similarity function sim(𝑖, 𝑗), such as the cosine between tag vectors, we can compute
the intra-list similarity of a recommendation list or user profile; this is the average similarity be-
tween pairs of items in the list:

ILS(𝐿) =
1

|𝐿|(|𝐿| − 1)
∑ sim(𝑖, 𝑗)

𝑖,𝑗∈𝐿:𝑖≠𝑗

A high intra-list similarity indicates that a list is not very diverse. If instead we have a distance
function 𝑑, we can compute intra-list distance, where high distance is more diverse.

Coverage
Coverage is the ability of the recommender to score or recommend across the breadth of the da-
tabase, or the fraction of items that might feasibly show up in a recommendation list.

Key Papers
Cai-Nicolas Ziegler, Sean McNee, Joseph A Konstan, and Georg Lausen. 2005. Improving

Recommendation Lists through Topic Diversification. 22–32.
DOI:https://doi.org/10.1145/1060745.1060754

Saúl Vargas and Pablo Castells. 2011. Rank and Relevance in Novelty and Diversity Metrics
for Recommender Systems. In RecSys ’11, 109–116.
DOI:https://doi.org/10.1145/2043932.2043955

Problems with Offline Evaluation
Offline evaluation, while very useful, has a number of limitations.

General Limitations
In an offline evaluation, we are holding out historical data and testing the recommender’s ability
to predict or model that data. This entails a focus on what the user has done, and it does not test

https://doi.org/10.1145/1060745.1060754
https://doi.org/10.1145/2043932.2043955

24

the recommender algorithm’s ability to prospectively affect future user behavior. This is true both
for predictive accuracy evaluations and recommendation (top-N) evaluation.

Limitations Specific to Top-N Evaluation
Top-N evaluation has some additional limitations due to the fact that the test data is missing
relevance judgements for most items.

 Popularity bias arises because popular items are more likely to be rated in general, which
means that they are more likely to be a test rating. A recommender that just recommends
popular items will do quite well, just because popularity is the right answer more often.
The experimental protocol is therefore hindered in its assessment of the recommender’s
ability to actually model individual user preference. This would not be a problem if a user’s
likelihood to rate an item depended only on their preference for that item; but since it is a
combination of preference and discovery or awareness, and popularity affects awareness,
this is a problem in evaluation.

 Missing relevance data means that a recommender that is very good at finding items the
user would like, but has never heard of — optimal serendipity — the evaluation procedure
will not recognize or reward this quality, and will prefer a recommender that is effective
at finding things the user has heard of.

 Recommender infection is similar to popularity bias, but arises because the data was col-
lected from users interacting with a recommender system; items recommended by the
system in use are more likely to appear in the data set.

Key Papers
Alejandro Bellogin, Pablo Castells, and Ivan Cantador. 2011. Precision-oriented Evaluation

of Recommender Systems: An Algorithmic Comparison. In RecSys ’11, 333–336.
DOI:https://doi.org/10.1145/2043932.2043996

Michael D Ekstrand and Vaibhav Mahant. 2017. Sturgeon and the Cool Kids: Problems with
Top-N Recommender Evaluation. Retrieved from https://aaai.org/ocs/in-
dex.php/FLAIRS/FLAIRS17/paper/viewPaper/15534

Allison J. B. Chaney, Brandon M. Stewart, and Barbara E. Engelhardt. 2018. How Algorith-
mic Confounding in Recommendation Systems Increases Homogeneity and Decreases
Utility. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18), 224–
232. DOI:https://doi.org/10.1145/3240323.3240370

https://doi.org/10.1145/2043932.2043996
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/viewPaper/15534
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/viewPaper/15534
https://doi.org/10.1145/3240323.3240370

25

Online Evaluation
There are, broadly speaking, three kinds of online evaluation:

 A/B tests
 User studies
 Multi-armed bandits

The last is not technically an evaluation technique, but rather is a method for directly finding
optimal recommendation algorithms.

A/B Testing
A/B testing is a means for running a randomized controlled trial of your recommender system (or
any other change to the system). The basic idea is this:

1. Randomly divide users into different (2 in the A/B case).
2. Give one the control (current system), and the other the treatment (new system, e.g. new

recommender algorithm).
3. Measure key outcomes (sales, clicks, renewals, etc.) and compare performance using

standard statistical techniques for evaluating controlled trials.

Notes on Structure
To do an A/B test well, you need to watch out for a number of things:

1. Run long enough to average over cyclic behavior (at least one week)
2. Throw away initial data, unless you are specifically looking to test novelty effects
3. Start slow and watch for problems, then ramp up
4. Have a good metric!

Key Papers and Resources
I highly recommend you read these, and especially watch the video!

Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M Henne. 2008. Controlled
experiments on the web: survey and practical guide. Data Min. Knowl. Discov. 18, 1 (2008),
140–181. DOI:https://doi.org/10.1007/s10618-008-0114-1

Ron Kovahi. 2015. Online Controlled Experiments: Lessons from Running A/B/n Tests for 12
Years. In KDD 2015. Sydney, NSW, Australia. https://youtu.be/ZfhQ-fIg4EU

https://doi.org/10.1007/s10618-008-0114-1
https://youtu.be/ZfhQ-fIg4EU

26

User Studies
User studies directly ask users to provide feedback on recommendations and their experiences.
This is often in the form of survey questionnaires, asking users to rate things like their satisfac-
tion or their perception of the diversity of the list.

User responses are necessary in order to measure subjective constructs such as satisfaction or
perceptions. These measurements can be integrated with objective metrics, such as offline
measures of diversity, and with behavioral observations such as user viewing or purchasing be-
havior to gain a holistic understanding of the system’s capabilities.

To perform a user study well, it is not sufficient to ask individual questions about dimensions
such as diversity, because individual user responses are quite noisy. Robust measurement of user
perception requires that we ask multiple questions per target construct; it’s best to make them as
statements to which users respond on a ‘Strongly Agree’ to ‘Strongly Disagree’ Likert scale. For
example, to measure Diversity, we might ask:

 This is a varied list of movies.
 The movies in this list are mostly the same. (note: this question is reversed!)
 This list of movies matches a variety of tastes.
 There are many different movies in this list to choose from.

We then use factor analysis to map the question responses to specific factors, estimating an overall
‘diversity’ score. If we have multiple constructs we want to relate to each other and/or to other
variables such as user activity or experimental conditions, we use structural equation modeling.

Key Papers
Bart Knijnenburg, Martijn Willemsen, Zeno Gantner, Hakan Soncu, and Chris Newell.

2012. Explaining the user experience of recommender systems. User Model. User-adapt
Interact. 22, 4–5 (October 2012), 441–504. DOI:https://doi.org/10.1007/s11257-011-9118-4

https://doi.org/10.1007/s11257-011-9118-4

27

Learning to Rank
When we approximated the SVD, we used a machine-learning approach to learn a model that can
predict ratings quite well. We then hoped that ranking by top-N would be a good way to turn those
into recommendations.

But that is not the only way we can learn models to produce recommendations. We can also learn
directly to rank items in an order consistent with user preferences. The fundamental machine
learning paradigm – optimize an objective function – can apply to list ranking metrics, not just
to prediction accuracy, like we saw with matrix factorization methods.

The fundamental difficulty for learning to rank is that optimizing a list accuracy function tends
to be harder than optimizing estimates for individual items, in two fundamental ways: it is more
computationally expensive to generate a list and measure it than to score an item, and the process
of generating a list is not differentiable.

AUC to Ranking
One way to address these problems is to simplify the ranking problem. Instead of learning a
model that can produce an entire rank of items, can we learn a model that, given two items, puts
them in the correct order?

That is, can we learn a function 𝑠(𝑖|𝑢) such that 𝑠(𝑖|𝑢) > 𝑠(𝑗|𝑢) when 𝑖 ≻𝑢 𝑗 – that is, user 𝑢
prefers item 𝑖 to item 𝑗?

The area under the curve we saw back in Offline Evaluation has a useful property: the AUC of a
ranking is equivalent to the fraction of items that the ranking puts in the correct order, or equiv-
alently, the probability that a randomly selected pair of items are in the correct order. We can
change the learning process to look at pairs of items instead of individual items, and optimize a
scoring function.

Bayesian Personalized Ranking
If 𝑖 ≻𝑢 𝑗, then we want 𝑠(𝑖|𝑢) > 𝑠(𝑗|𝑢), and therefore 𝑠(𝑖|𝑢) − 𝑠(𝑗|𝑢) > 0. The full details are
in the paper, but we can accomplish this by maximizing the function:

∑ ln 𝜎(𝑠(𝑖|𝑢) − 𝑠(𝑗|𝑢)) − reg(𝑠)
(𝑢,𝑖,𝑗):𝑖≻𝑢𝑗

This can be done for many different scoring functions; the common BPR-MF uses matrix factor-
ization, so 𝑠(𝑖|𝑢) = �⃗�𝑢 ⋅ �⃗�𝑖.

28

The problem is therefore to find 𝑃 and 𝑄 such that this function is maximized. For this model,
the regularization term reg(𝑠) = 𝜆(‖𝑃‖𝐹 + ‖𝑄‖𝐹).

Key Paper
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009.

BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI ’09, 452–461.
https://arxiv.org/abs/1205.2618

https://arxiv.org/abs/1205.2618

	Resources
	Recommendation Fundamentals
	What Is a Recommender System?
	Recommendations in Context
	Recommendation Tasks
	Recommendation Inputs
	Relation to Psychology
	Mathematical Representations

	Overview of Recommendation – Early Perspective

	Mathematical Preliminaries
	Linear Algebra

	Non-Personalized Recommendation
	Means and the Bias Model
	Popularity
	Time Decay: Hacker News and Reddit
	Contextualization: Association Rules

	Content-Based Filtering
	Types and Sources of Content Information
	Methods
	Bag of Words and TF-IDF

	Nearest-Neighbor Collaborative Filtering
	Item-based k-NN
	Unary or Binary Data
	Negative Similarities
	Key Papers

	User-based k-NN
	Key Paper

	Matrix Factorization
	Singular Value Decomposition
	Key Paper

	Approximating SVD through Alternating Least Squares
	Key Paper

	Approximate SVD through Featurewise Stochastic Gradient Descent (FunkSVD)

	Evaluation: Introduction and Fundamentals
	What is a Good Recommendation?

	Offline Evaluation
	Evaluation Structure
	Splitting Data
	Notation
	Measuring Predictive Accuracy
	Root Mean Squared Error
	Mean Absolute Error

	Measuring Recommendation Accuracy
	Precision
	Recall and Hit Rate
	Mean Reciprocal Rank
	Discounted Cumulative Gain
	Receiver Operating Characteristic and AUC
	Key Papers

	Other Offline Metrics
	Novelty
	Diversity
	Coverage
	Key Papers

	Problems with Offline Evaluation
	General Limitations
	Limitations Specific to Top-N Evaluation
	Key Papers

	Online Evaluation
	A/B Testing
	Notes on Structure
	Key Papers and Resources

	User Studies
	Key Papers

	Learning to Rank
	AUC to Ranking
	Bayesian Personalized Ranking
	Key Paper

