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RecSys and me

Recommender systems are defined by application: 
recommend items to users

Involves:
• Human-computer interaction
• Information retrieval
• Machine learning
• Psychology
• Marketing
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today

1. Warm-up problem

2. Intro & case study

3. What is a recommender system?

4. How do recommenders interact with decisions?

5. Promise & pitfalls

6. Roadblocks and guidance
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Diversity and 
Representation in 
Book Authorship
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Source: Canadian Women in the Literary Arts. http://cwila.com/2015-cwila-count-methods-results/
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How do recommender 
systems interact with 

these efforts?



Hurdles by Ragnar Singsaas, used under CC-BY-SA 2.0. https://flic.kr/p/5jgjJP
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recommendation list response
[Ekstrand et al., RecSys 2018]
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Input balance propagates, though extent varies



how?

•Reify existing choice patterns (this paper)

• Transport content stereotypes [Speer 2017]

•…
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questions

•How do humans interpret and make use of 
recommendations?

•When is it acceptable to use knowledge of human 
decision-making?
• Individual or global?
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we are nudging

Recommender systems nudge, at the very least

• How?

• Towards what?

• With what accountability?

Not addressing this means we don’t know what our nudges 
are, not that we aren’t making them.
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case study: energy savings
[Starke et al.,  RecSys 2017]

Goal: encourage citizens to adopt energy-
saving measures

System: web portal for exploring energy 
saving measures

Method: model difficulty & user ability on 
a Rasch scale, recommend measures based 
on user ability

Findings: increased user satisfaction, 
increased adoption (4 weeks out)
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From Starke, A., Willemsen, M.C. and Snijders, C. 2017. Effective User Interface Designs 
to Increase Energy-efficient Behavior in a Rasch-based Energy Recommender System. In 
Proc. ACM RecSys 2017.
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recommender vocabulary

Items 🌽🍕⚗🎁🚲
are the things we recommend

Users 👸🙋🕴👯👽
receive & act on recommendations
provide input used for recommendation

Ratings 🌟💛👍
encode user preference for items



Recommender Tasks

Predict
estimate how much 👽 likes 🎁

can be: predicted rating
purchase probability
score



recommender tasks

Predict
estimate how much 👽 likes 🎁

can be: predicted rating
purchase probability
score

Recommend
identify items that 👽may like
maybe a 🚀?



learning about users
[Ekstrand and Willemsen 2014]

Listen to what they sayLook at what they do

Behavior Signals

Behavioral A/B Testing

Explicit Preference

User Surveys

Focus Groups



objective functions for modeling users

Score item 𝑖 (or set 𝐼∗) for user 𝑢 with need ℎ in context 𝑥:

𝑠 𝑖 𝑢, ℎ, 𝑥
𝑠(𝐼∗|𝑢, ℎ, 𝑥)

Optimize to predict:
• Rating (𝑟𝑢𝑖 − 𝑠 𝑖 𝑢 )
• Consumption probability (𝑃 𝑖 𝑢 = logit−1𝑠 𝑖 𝑢 )
• Relative order (𝑖 ≻𝑢 𝑗 ⇔ 𝑠 𝑖 𝑢 > 𝑠(𝑗|𝑢))
• Regret (e.g. 𝑃 𝐼 ∩ 𝐺𝑢 = ∅ )
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objective functions for evaluating recsys

•Any of the previous!

• Improve KPI in online deployment
• Engagement (e.g. time on site)
• Revenues
• Sales
• Information access welfare function? [Fish et al., 2019]
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but who all is affected?
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recommendations in context
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prioritize the alternatives
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expand the alternatives
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constrain the alternatives
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explain the alternatives
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postpone the alternatives
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scores and users

• Scores bias user ratings [Cosley et al., 2003]
• For both seen and unseen movies
• Users may sense this

• Scores + decisions may exacerbate unfairness [Green & 
Chen 2019]

•People are reluctant to incorporate algorithmic inputs 
[Yeomans et al. 2019]
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explanations and users

Explanations can …

• … improve system adoption [Herlocker et al, 2000]

• … skew expectation of quality [Bilgic & Mooney 2005]

• … improve score adoption [Yeomans et al. 2019]

Prediction is not explanation

Explanation != justification
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recommendations and users

•Affects decrease choice difficulty [Willemsen et al. 2016]

• Increases / decreases likelihood of awareness

• Influence product selection [Senecal and Nantel 2004]
• Calling them recommendations increases this effect

•Captivate our attention [Seaver 2018]
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the feedback loop
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• Homogenizes user behavior [Chaney et al. 2018]
• Can decrease overall diversity, rich get richer [Fleder & Hosanagar 2009]
• Filter bubbles? Not so much. [Hosanager et al. 2013, Nguyen et al. 2014, 

Möller et al. 2018]



recommendations and fairness

Fair recommendations …

•… serve all users [Ekstrand et al., FAT* 2018]

•… fairly allocate exposure or attention [Biega et al. 2018]

•… promote group representation [Ekstrand et al., RecSys
2018; Sapiezynski et al. 2019] 

•… fairly orders item pairs [Beutel et al. 2019]

•… what else?
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nudge to what?

The user’s goal’s [Ekstrand & Willemsen 2016, Yang et al. 2019]
Counterexample in Levy

Social good
• Energy savings [Starke et al. 2017]
• Sustainability [Tomkins et al. 2018]
• Fairness?

Profit
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nudging or shoving?

Recommender systems’ behavior-
targeting capabilities provide 

incredible power and substantial risk.

We can identify nudges users are more likely to adopt.
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open questions

How do people respond? Much still unknown.
• In fairness-relevant settings?
• What drives different kinds of adoptions?
• What kind of adherence is needed?
• When & how to restrict autonomy?

How do we elicit user goals for nudging?
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opportunities for recommenders

If we know a user’s goals and their behavior, maybe the 
recommender can help!

• Find ‘baby steps’ that are:
• Likely to be adopted (behavior helps here!)
• Closer to user’s goals (their input necessary here!)

• Persuasive computing has how, but recsys can do more for 
what.



giving users a voice

Example: Twitter and the algorithmic feed
• Good reasons to involve filtering!
• But: it changes how the service is used

• Existing users feel unheard

Participatory design provides a framework for incorporating user 
voices into the design process.

Transparency lets users know whose voices are being incorporated 
and how.



moral framework impedance

40Pictures from “Jeremy Bearimy”. The Good Place . NBC.

Virtue Deontology Nihilism Consequentialism

Our intentions were 
good / not bad.

We followed the 
rules.

Why should we care? What is the impact?



power analysis

Anyone in a position to act 
on these questions probably 
has much more power than 
those the answers will 
affect.
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what to do?

• Look for applications to clearly do good

• Involve affected stakeholders
• Users directly
• Stakeholder groups (participatory design helpful but insufficient)

• Involve disciplinary expertise
• Domain – the devil is in domain details
• Normative analysis

• Acknowledge & explore moral frame(s)

• Study widely, reflect, interrogate
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Thank You
Questions?

43https://purl.org/mde/FairEcon


