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ABSTRACT
Recommender systems research is being slowed by the diffi-
culty of replicating and comparing research results. Published
research uses various experimental methodologies and metrics
that are difficult to compare. It also often fails to sufficiently
document the details of proposed algorithms or the eval-
uations employed. Researchers waste time reimplementing
well-known algorithms, and the new implementations may
miss key details from the original algorithm or its subsequent
refinements. When proposing new algorithms, researchers
should compare them against finely-tuned implementations of
the leading prior algorithms using state-of-the-art evaluation
methodologies. With few exceptions, published algorithmic
improvements in our field should be accompanied by working
code in a standard framework, including test harnesses to
reproduce the described results. To that end, we present
the design and freely distributable source code of LensKit,
a flexible platform for reproducible recommender systems
research. LensKit provides carefully tuned implementations
of the leading collaborative filtering algorithms, APIs for
common recommender system use cases, and an evaluation
framework for performing reproducible offline evaluations of
algorithms. We demonstrate the utility of LensKit by repli-
cating and extending a set of prior comparative studies of
recommender algorithms — showing limitations in some of
the original results — and by investigating a question recently
raised by a leader in the recommender systems community
on problems with error-based prediction evaluation.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
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1. INTRODUCTION
It is currently difficult to reproduce and extend recom-

mender systems research results. Algorithmic enhancements
are typically published as mathematical formulae rather than
working code, and there are often details and edge cases that
come up when trying to implement them that are not dis-
cussed in the research literature. Further, the state of the art
has developed incrementally and in a decentralized fashion,
so the original papers for a particular algorithm may not
consider important improvements developed later.

As a result, current best practices in recommender systems
must be rediscovered and reimplemented for each research
project. In the process, important optimizations such as pre-
processing normalization steps may be omitted, leading to
new algorithms being incorrectly evaluated.

Recommender evaluation is also not handled consistently
between publications. Even within the same basic structure,
there are many evaluation methods and metrics that have
been used. Important details are often omitted or unclear,
compounding the difficulty of comparing results between
papers or lines of work.

To enable recommender systems research to advance more
scientifically and rapidly, we suggest raising the standards
of the field to expect algorithmic advances to be accompa-
nied by working, reusable code in a framework that makes
re-running evaluations and experiments easy and reliable.
This framework (or frameworks) should include world-class
implementations of the best previously-known algorithms
and support reproducible evaluation with standard datasets
using cross-validation and a suite of appropriate metrics.

To foster this movement, we present LensKit, an open
source recommender systems toolkit we have developed.
LensKit is intended to provide a robust, extensible basis
for research and education in recommender systems. It is
suitable for deployment in research-scale recommender sys-
tems applications, developing and testing new algorithms,
experimenting with new evaluation strategies, and classroom
use. Its code and surrounding documentation also serves as
documentation of what is necessary to take recommender al-
gorithms from the mathematical descriptions in the research
literature to actual working code.

In the first portion of this paper, we present the design of
LensKit. We then demonstrate it with a comparative evalu-
ation of common recommender algorithms on several data
sets and a new experiment examining whether rank-based
evaluation methods would improve recommender design. We
conclude with a vision for the future of the recommender
systems research community and future work for LensKit.



2. OTHER RECOMMENDER TOOLKITS
Over the past two decades, there have been a number of

software packages developed for recommendation, including
SUGGEST1, MultiLens, COFI2, COFE, Apache Mahout3,
MyMediaLite4, and EasyRec5, jCOLIBRI6, and myCBR7.
Several of these are still under active development.

LensKit sets itself apart by being expressly designed for
flexibility and extensibility in research environments, while
maintaining high performance; its primary concern is to be
maximally useful for research and education, not to support
large-scale commercial operations. It is also designed to sup-
port a wide variety of recommendation approaches; while
our current development focus is on collaborative filtering
methods, we have designed the software to support other ap-
proaches as well. In addition to algorithms & APIs, LensKit
provides a flexible and sophisticated evaluation framework
for performing reproducible evaluations of algorithms.

The source code for LensKit is publicly available under the
GNU Lesser GPL (version 2 or later), allowing it to be used
in a variety of contexts. It is in Java, so it can be used and
extended in many environments in a widely-known language.

We encourage the research community to consider imple-
mentation on one of the leading recommender platforms as
an important step in preparing an algorithm for publication.
We propose LensKit as one such platform and believe that
it is particularly well-suited for recommender research.

Other research communities have benefited from open plat-
forms providing easy access to the state of the art. Lemur8

and Lucene9 provide platforms for information retrieval re-
search. They also make state-of-the-art techniques available
to researchers and practitioners in other domains who need
IR routines as a component of their work. Weka [7] similarly
provides a common platform and algorithms for machine
learning and data mining. These platforms have proven to
be valuable contributions both within their research commu-
nities and to computer science more broadly. We hope that
high-quality, accessible toolkits will have similar impact for
recommender systems research.

3. DESIGN OF LENSKIT
The design of LensKit is driven by three primary goals:

Modularity. Many recommender algorithms naturally de-
compose into several constituent pieces, such as normaliz-
ers, similarity functions, and prediction rules [8]. Further,
many of these components are not specific to one particular
algorithm but can be reused in other algorithms. When
implementing recommendation methods for LensKit, we
design them to be highly modular and reconfigurable. This
allows improvements in individual components to be tested
easily, and allows the recommender to be completely re-
configured for the particular needs of a target domain.

1
http://glaros.dtc.umn.edu/gkhome/suggest/overview/

2
http://savannah.nongnu.org/projects/cofi/

3
http://mahout.apache.org

4
http://www.ismll.uni-hildesheim.de/mymedialite/

5
http://www.easyrec.org/

6
http://gaia.fdi.ucm.es/projects/jcolibri/

7
http://mycbr-project.net/

8
http://www.lemurproject.org

9
http://lucene.apache.org/

Clarity. Since LensKit is intended as a platform for rec-
ommender systems research and education, we aim for a
clear design and well-documented, straightforward (but
not näıve) code. Clarity also helps us meet our goals of
providing machine-executable documentation of various
details in recommender implementations.

LensKit is also usable in real-world situations, particularly
web applications, to provide recommender services for live
systems and other user-facing research projects. This in-
troduces some complexity in the design, as LensKit must
be capable of interacting with data stores and integrating
with other application frameworks. Our approach is to
keep the core simple but design its interfaces so that the
appropriate extension and integration points are available
for live systems (e.g. request handlers in a multithreaded
web application).

The impact of the integration concern is evident in the
interfaces a client uses to create an active recommender:
the client first configures and builds a recommender en-
gine, then opens a session connected to the data store,
and finally asks for the relevant recommender object. This
approach enables recommender models to be computed
offline, then recombined with a database connection in a
web application request handler. Omitting such considera-
tions would make it difficult to use LensKit recommender
implementations outside of batch evaluation settings.

Efficiency. In developing LensKit, we prefer clear code over
obscure optimizations, but we seek reasonable efficiency
through our choice of data structures and implementation
techniques. LensKit is capable of processing large, widely-
available data sets such as the MovieLens 10M and the
Yahoo! Music data sets on readily available hardware.

LensKit is implemented in Java. Java balances reason-
able efficiency with code that is readily readable by a broad
audience of computer scientists. Since it runs on the JVM,
LensKit is also usable from many other languages such as
Groovy, Scala and Ruby (via JRuby).

3.1 Core APIs
The fundamental interfaces LensKit exposes are the Item-

Scorer and ItemRecommender interfaces, providing support
for the traditional predict and recommend tasks respectively.
Separating these interfaces allows configurations to only sup-
port the operations they meaningfully can; a collaborative
filter configured and trained on purchase data is likely unsuit-
able for predicting ratings. ItemScorer is a generalization of
predict, computing general per-user scores for items. A sub-
class, RatingPredictor, scores items by predicted preference
in the same scale as user ratings.

Listing 1 shows the core methods exposed by these inter-
faces. The predict API is fairly self-explanatory. The recom-
mend API allows the recommended items to be controlled
via two sets: the candidate set C and the exclude set E. Only
items in C\E are considered for recommendation. Either or
both sets may be unspecified; the default candidate set is
the set of all recommendable items, while the default exclude
set varies by recommender but is generally something in the
spirit of “items the user has rated” (this will be different
e.g. for recommenders operating on page view and purchase
data). This set-based exclusion provides an easy way for
client code to integrate recommendation with other data



Listing 1: Core LensKit interfaces
public interface ItemScorer {

/∗∗
∗ Compute scores for several items for a user.
∗/

SparseVector score(long user, Collection<Long> items);
}

public interface ItemRecommender {
/∗∗
∗ Recommend up to ‘count’ items for a user. Only items
∗ in ‘candidates’ but not in ‘excludes’ are considered.
∗/

ScoredLongList recommend(long user, int count,
Set<Long> candidates, Set<Long> excludes);

}

queries. If the recommender is capable of providing scores
with recommendations, the recommendations can be further
blended with other data such as search relevance.

3.2 Data Access Layer
LensKit incorporates a simple data access abstraction so

that algorithms can access the user history and preference
data. Implementations can be easily backed by flat files,
databases, persistence architectures such as Hibernate10, and
nontraditional data stores. We provide flat file and in-memory
implementations as well as a reconfigurable JDBC-based im-
plementation for database integration. This design is based
on the Data Access Object J2EE design pattern. Data ac-
cess objects (DAOs) are session-scoped, corresponding to
database connections or persistent sessions; this enables clean
integration with web frameworks.

The DAO represents users as having histories of events,
such as ratings or purchases. Recommenders then extract
the event data they can process from the user’s history to
perform recommendation.

Many aspects of algorithm implementation are easier if we
can assume that the LensKit has access to an immutable view
of the ratings data while building a recommender model; this
allows multiple passes to be taken over it, and recommender
components can be developed and trained independently
and freely mixed. LensKit therefore takes a snapshot of the
data model to be used in the build process. By default,
this snapshot is an in-memory copy of the database; DAO
implementors can use other methods such as transactions or
replication as appropriate.

Iterative methods, such as gradient descent and expectation
maximization, require the ability to quickly and repeatedly
iterate over the data set. To facilitate this, we provide another
abstraction, a rating snapshot, to provide an efficient in-
memory representation of rating data for rapid iteration in
iterative model building methods.

3.3 Building and Using Recommenders
Listing 2 shows the basic flow to construct and use a

LensKit recommender implementation. There are a number
of steps and classes in use, but this allows LensKit to be a
highly flexible in the types of recommenders it supports.

The recommender engine factory manages configuration
and builds the recommender engine. Recommender engines
encapsulate whatever pre-computed model data an algo-
rithm requires and provide a way to reconnect this model

10
http://www.hibernate.org

Listing 2: Building a recommender
// Configure data access
daoFactory = new SimpleFileRatingDAO.Factory(fileName);
// Create rec. engine factory
factory = new LenskitRecommenderEngineFactory(daoFactory);
// Configure the recommender
factory.setComponent(ItemRecommender.class,

ItemItemRecommender.class);
// Build the engine
engine = factory.build();
// Get a recommender
recommender = engine.open();
try {

// Use recommenders and predictors
itemRec = recommender.getItemRecommender();

} finally {
// Close the recommender when finished
recommender.close();

}

data with the backing data store to produce a working rec-
ommender. Algorithm implementations are designed so that
data-dependent querying and prediction is separate from pre-
computed data. This separation allows recommender engines
to be built off-line and shared across database connections.

3.4 Recommender Configuration
In order to support the degree of modularity we require in

LensKit, we needed a flexible configuration system to wire
together the various objects needed to provide recommenda-
tions. Configuration is particularly complicated in the face
of pre-computed models and session-scoped data access (e.g.
a user-user recommender that uses a normalization stage
dependent on pre-computed values and a similarity func-
tion that fetches user demographic information from the
database).

Dependency injection [5] provides a powerful and flexible
solution to these problems. LensKit’s configuration mecha-
nism, implemented in the recommender engine factory, looks
at the constructors and setters of the various recommender
components to determine their dependencies and figure out
how to satisfy them. Java annotations provide guidance to
the resolver, specify defaults, and define names for param-
eters. Annotations also indicate objects that need to be
pre-computed as a part of the recommender model.

Client code, therefore, only needs to specify which imple-
mentations it needs for particular components. In particular,
it needs to specify the ItemScorer and/or ItemRecommender
implementations it wishes to use; most other components
have default implementations. The client then specifies any
other needed components or parameter values, and the factory
automatically constructs all other necessary components.

To manage the configuration, the factory uses several con-
tainers, environments for resolving dependencies and supply-
ing values and instances. Figure 1 shows these containers.
The factory looks at the required predictor and recommender
implementations, resolves their dependencies from the con-
figuration and defaults found in annotations, and builds all
objects that are marked to be built using the build container.

After building all pre-built objects, the factory sets up the
recomender container, responsible for supplying all compo-
nents that are shared between sessions. The recommender
container contains instances or provision rules for all objects
which are not dependent on the DAO. It also constructs
the necessary configuration for a complete recommender and
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Figure 1: Containers in the recommender lifecycle.

encapsulates this configuration, along with the recommender
container, in a recommender engine.

The recommender engine, when a session is opened, cre-
ates a new session container that inherits configuration and
objects from the recommender container and can reconnect
those objects with a DAO. The session container is then
encapsulated in a Recommender, which uses it to provide the
final ItemScorer and ItemRecommender objects.

The result is that building new modular, extensible algo-
rithm implementations is easy. The developer merely needs
to implement the core interfaces for the new algorithm and
make their objects depend on the appropriate other com-
ponents. New algorithms will often be able to reuse other
components supplied with LensKit. They can define new
parameters by creating Java annotations, and LensKit’s in-
frastructure takes care of providing all components with their
necessary configuration. It also ensures that components that
need data access are instantiated fresh for each session and
that expensive objects, such as model data, are automatically
shared between all components that need them.

3.5 Implementations and Components
LensKit provides implementations of three commonly-used

collaborative filtering algorithms: user-user [15, 8], item-item
[16], and regularized gradient descent SVD [6, 14]. These
algorithms are each split into components that can be recom-
bined and replaced independently. Section 5 provides more
details on configuration points exposed by each algorithm.

The modular design architecture for algorithm implemen-
tation accomplishes two important things. First, it enables
improvements that only touch one piece of the collaborative
filtering process, such as a new normalization step, to be
implemented and used in the context of an existing system
and tested with multiple algorithms. Second, it allows new
algorithms to reuse pieces of existing ones, decreasing the
effort needed to implement and test a new algorithm.

LensKit provides several components that can be reused
in multiple algorithms. Of particular note are its baseline
predictors and normalizers. Baseline predictors are rating
predictors that are guaranteed to be able to generate a predic-
tion for any user-item pair. Supplied baselines include global
mean, item mean (falling back to global mean for unknown
items), user mean (again falling back to global mean), and
item-user mean (item mean plus user’s average offset from
item mean). Baselines are used by the collaborative filtering
algorithms to normalize rating data or to supply predictions
when they are unable to [8, 11].

Normalizers apply reversible transformations to a user’s
rating vector. They are used to normalize data prior to
computing similarities or to normalize ratings for predic-
tion generation and denormalize the resulting predictions.
Normalization is crucial to good performance with many algo-
rithms [15, 16, 6, 11]. Besides the identity function, we provide
baseline-subtracting normalizers (subtracting the baseline
predictor from each rating) and a user-variance normalizer
that normalizes user ratings to z-scores [8].

4. EVALUATING RECOMMENDERS
In addition to a recommendation API and several collabo-

rative filtering implementations, LensKit provides a frame-
work for offline, data-driven evaluation of recommender algo-
rithms. This allows any algorithm implementing with LensKit
to be evaluated and compared against existing approaches.

We currently provide support for train-test and k-fold cross-
validation evaluation strategies with a variety of metrics [9,
17] and plan to add support for additional evaluation strate-
gies, such as temporal methods, as development continues.
LensKit’s common recommender API also provides a good
basis for experimenting with new evaluation strategies.

4.1 Importing Data
The evaluation framework accesses rating data stored in an

SQLite database. Algorithm definitions can optionally require
that the data be pre-loaded into memory if the algorithm
does not operate efficiently using database queries.

Most publicly-available data sets are distributed as text
files. A delimited text file of user, item, and rating data, pos-
sibly with timestamps, is the most common format. LensKit
includes an importer to load delimited text files into database
tables. This importer has been tested to work on the Movie-
Lens data sets and the music data set from Yahoo! WebScope.

LensKit also provides an importer that splits up rating
data for cross-validation. The split is done by partitioning the
users into k disjoint sets. For each set, n randomly selected
ratings are withheld from each user’s profile and emitted as
the test set, while the remaining ratings from those users and
all other users are stored in the training set. LensKit also
provides support for withholding ratings based on timestamp
(testing against each user’s n most recent ratings).

4.2 Train-Test Evaluations
The train-test prediction evaluator builds a recommender

from the train table in a database and measures the rec-
ommender’s ability to predict the ratings in the test set.
Cross-validation can be achieved by running a train-test eval-
uation multiple times on the output of the crossfold importer.

The evaluator supports multiple pluggable metrics, allow-
ing the recommender to be measured in a variety of ways.
LensKit includes the standard accuracy metrics MAE and
RMSE (both globally averaged and averaged per-user), as
well as coverage metrics and the rank-based metrics nDCG
[10] and half-life utility [3].

nDCG is employed as a prediction evaluator by ranking the
items in order of prediction and computing the nDCG using
the user’s rating for each item as its value (half-life utility
is implemented similarly). The result is a measurement of
the ability of the predictor to rank items consistent with the
order imposed by the user’s ratings, which should result in
accurate top-N recommendations for algorithms that order
by prediction. This configuration is a more realistic evaluation



than asking the recommender to recommend N items and
then computing nDCG, as an algorithm that produces a
high-quality recommendation that the user had never seen
and rated will not be penalized for doing its job by promoting
the unknown item over a known but less-well-liked item.

Combined with statistical analysis scripts in a language
like R, this evaluation framework supports fully reproducible
evaluations. The ability to download and run the evaluations
behind new recommender system research papers holds great
promise for increasing the quality and reuseability of research
results and presentation.

5. COMPARATIVE ALGORITHM EVALU-
ATION

To demonstrate LensKit we present in this section a com-
parative evaluation of several design decisions for collabora-
tive filtering algorithms, in the spirit of previous comparisons
within a single algorithm [8, 16]. We compare user-user,
item-item, and the regularized gradient descent SVD algo-
rithm popularized by Simon Funk [6, 14]. This evaluation
extends previous comparative evaluations to larger data sets
and multiple algorithm families and serves to demonstrate
the versatility of LensKit and its capability of expressing
a breadth of algorithms and configurations. In considering
some configurations omitted in prior work we have also found
new best-performers for algorithmic choices, particularly for
the user-user similarity function and the normalization for
cosine similarity in item-item CF.

5.1 Data and Experimental Setup
We use four data sets for our evaluation: three data sets

from MovieLens, containing 100K, 1M and 10M movie ratings
(ML-100K, ML-1M and ML-10M), and the Yahoo! Music
Ratings data set from Yahoo! WebScope, containing 700M
song ratings in 10 segments (Y!M). We use all three Movie-
Lens datasets to emphasize the ability of LensKit to generate
results that are directly comparable to previously published
work; the results we present here are primarily from ML-1M.

On all three MovieLens data sets, we performed 5-fold
cross-validation as described in section 4.1 and averaged the
results across the folds. 10 randomly-selected ratings were
withheld from each user’s profile for the test set, and the
data sets only contain users who have rated at least 20 items.
The Y!M data set is distributed by Yahoo! in 10 train-test
sets, with each test set containing 10 ratings from each test
user; we used the provided train/test splits.

For each train-test set, we built a recommender algorithm
and evaluated its predict performance using MAE, RMSE,
and nDCG, as described in section 4.2.

5.2 User-User CF
Our implementation of user-user collaborative filtering pro-

vides a number of extension points, allowing the algorithm to
be tuned and customized. The similarity function, neighbor-
hood finding strategy, pre-similarity normalization, predictor
normalization, and baseline predictor (used when no neigh-
borhood can be computed) can all be independently config-
ured.11 Each component also exposes various parameters,

11There are a few limitations due to using PicoContainer for
dependency injection. We are working on a solution to this
problem that will allow true independence of all components.

such as the neighborhood size and smoothing and damping
parameters.

Figure 2(a) shows the performance of user-user CF on
the ML-1M data set for several similarity functions and
neighborhood sizes. We used item-user mean normalization
for prediction, resulting in the following prediction rule (µ is
the global mean rating, N the most similar users who have
rated i, and ru,i = ∅ for missing ratings):

pu,i = µ+ bi + bu +

∑
u′∈N sim(u, u′) · (ru′,i − µ− bi − bu′)∑

u′∈N |sim(u, u′)|

bi =

∑
{u:ru,i 6=∅}(ru,i − µ)

|{u : ru,i 6= ∅}|

bu =

∑
{i:ru,i 6=∅}(ru,i − µ− bi)
|{i : ru,i 6= ∅}|

Previous work suggested using normalizing by the user
mean [15] or the user mean and variance [8] to generate pre-
dictions, but the item-user mean performed comparably in
our experiments on the ML-100K set (slightly underperform-
ing mean-and-variance on MAE but doing slightly better on
RMSE). The item-user mean was also used as the baseline
for unpredictable items.

For both Pearson correlation and Spearman rank corre-
lation, we applied a significance weighting threshold of 50
[8], as this improved their performance. Cosine is unadjusted
and computed on each user’s raw ratings. The CosineNorm
similarity is similarly unadjusted but operates on user-mean-
centered ratings. Cosine similarity on mean-centered data is
identical to Pearson correlation, scaled almost proportionally
to I1∩I2

|I1||I2|
; our data suggest that the self-damping effect of

cosine similarity produces better results than applying sig-
nificance weighting to Pearson correlation. Prior work [3, 8]
found cosine to underperform correlation-based similarity
functions methods and therefore concluded that it is not a
good choice for user-user CF; properly normalized, however,
it performs quite well.

5.3 Item-Item CF
Our item-item CF implementation is similarly configurable,

although it currently requires the same data normalization
to be used both when building the similarity matrix and
computing final predictions. This configuration is generally
preferable, however, as early trials with differing normaliza-
tions produced poor results.

Figure 2(b) shows the performance we achieved with item-
item CF. The neighborhood size is the number of neighbors
actually considered for each prediction; in all cases, the com-
puted similarity matrix was truncated to 250 neighbors per
item. No significance weighting or damping was applied to
the similarity functions. Each of the different cosine variants
reflects a different mean-subtracting normalization applied
prior to building the similarity matrix; user-mean cosine
corresponds to the adjusted cosine of Sarwar et al. [16]. Con-
sistent with previous work on smaller data sets, normalized
cosine performs the best. We also find that normalizing by
item mean performs better than user mean; this suggests
that measuring similarity by users whose opinion of an item
is above or below average provides more value than measur-
ing it by whether the prefer the item more or less than the
average item they have rated.
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(a) User-user CF
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(c) Regularized (Funk) SVD

10 20 30 40 50 60 70 80 90 100

0.940

0.945

0.950

0.955

0.960

Neighborhood size

nD
C

G

Pearson Cosine
CosineNorm Spearman

(d) User-user CF (nDCG)

10 20 30 40 50 60 70 80 90 100

0.940

0.945

0.950

0.955

0.960

Neighborhood size

nD
C

G

Pearson Cosine
Cosine (User) Cosine (Item)
Cosine (ItemUser)

(e) Item-item CF (nDCG)

Figure 2: Accuracy of recommender predictions (ML-1M data set unless otherwise indicated)

5.4 Regularized SVD
LensKit provides a regularized gradient descent SVD im-

plementation, also known as FunkSVD. Figure 2(c) shows
the performance of this implementation on both the 100K
and 1M data sets for varying latent feature counts k. λ is
the learning rate; λ = 0.001 was documented by Simon Funk
as providing good performance on the Netflix data set [6],
but we found it necessary to increase it for the much smaller
ML-100K set. Each feature was trained for 100 iterations,
and the item-user mean baseline with a smoothing factor
of 25 was used as the baseline predictor and normalization.
We also used Funk’s range-clamping optimization, where the
prediction is clamped to be in the interval [1, 5] after each
feature’s contribution is added. This algorithm’s implementa-
tion is somewhat less flexible than the others, as supporting
features such as the rating range clamp requires the normal-
ization phase to be built in to the algorithm implementation.
Therefore, it only supports configuring a baseline predictor
and not a general normalizer.

5.5 Comparison
Figure 3 shows the relative performance of representative

algorithms for each family on the ML-1M, ML-10M, and Y!M
data sets. The user-user algorithm uses normalized Cosine
similarity and 50 neighbors; it is excluded from Y!M due to
its slow performance on large data sets. Item-item uses 30
neighbors and item-user mean normalization. FunkSVD uses
30 latent factors, 100 iterations per factor, range clamping and
λ = 0.001. FunkSVD outperforms the other two algorithms
on all three metrics. While we do not have precise timing
data, FunkSVD took substantially less time to build its model
than item-item on the Y!M data set; on all other data sets,
item-item had the fastest build phase.

6. ERROR VS. RANK IN EVALUATION
In a recent blog post [1], Xavier Amatriain raised the

question of whether approaches to building and evaluating
recommender systems assuming that user ratings are pro-
vided on a linear scale (that is, a 5-star movie is as much
better than a 4-star as a 4-star is than a 3-star) is funda-

mentally flawed. His argument, briefly summarized, is this:
it is well-known that Likert-style feedback from users is or-
dinal (users like 5-star movies better than 4-star movies)
but not cardinal (it tells us little about how much better
the 5-star movie is than the 4-star one) [2]. That is, it is
usable for ranking items by preference but not for measur-
ing preference in a manner comparable between users. Most
recommender algorithms, however, assume that user ratings
are a linear scale, though many normalize ratings to com-
pensate for differences in how users use the scale. Further,
common evaluations such as MAE or RMSE also assume
that rating data is a measurement. Therefore, we may be
both measuring and optimizing the wrong thing when we
build recommender systems. He suggests that rank-based
evaluations such as normalized discounted cumulative gain
(nDCG) may measure the ability of recommender algorithms
to accurately model user preferences more accurately.

We seek to understand whether this flaw in recommender
design and evaluation corresponds to decreased effectiveness
of recommender algorithms. Even if most algorithms are
based on a flawed premise — that user ratings provide an
absolute measurement of preference — it may be that these
algorithms are still sufficiently effective. To evaluate this ques-
tion, we tested a selection of recommenders with both nDCG
and RMSE. If the relative performance of the algorithms
differed, that would be evidence that using distance-based
accuracy metrics is indeed leading us astray.

Figures 2(d) and 2(e) show the various permutations of
user-user and item-item collaborative filtering measured using
nDCG. There is little difference in the relative performance
of the different variants. Of particular note is the fact that
Spearman correlation — a rank-based approach to computing
user similarity — continues to perform noticeably worse than
distance-based methods. We might expect it to perform better
when using a rank-based evaluation metric.

This lack of change as a result of using nDCG does not
mean that Amatriain is wrong. It may be that our current
families of algorithms cannot easily be adjusted to think of
user preference in terms of ranks and entirely new approaches
are needed. It could also be the case that more sophisticated
experimental frameworks, particularly user studies, will be



ML−1M ML−10M Y! Music
M

A
E

0.65

0.70

0.75

0.80

0.85

U
se

r−
U
se

r

It
e
m

−
It
e
m

F
u
n
kS

V
D

G
lo

b
a

l 
R

M
S

E

0.9

1.0

1.1

U
se

r−
U
se

r

It
e
m

−
It
e
m

F
u
n
kS

V
D

n
D

C
G

0.940

0.945

0.950

0.955

0.960

U
se

r−
U
se

r

It
e
m

−
It
e
m

F
u
n
kS

V
D

Figure 3: Representative algorithms

needed to see an actual difference. The better-performing
algorithms in our experiment achieve over 0.95 nDCG, putting
them within 5% of being perfect within the measurement
capabilities of the metric. Achieving the remaining 5% may
not be feasible with the noise inherent in user ratings (as it
is likely that ratings are not entirely rank-consistent with
user preferences), and may not accurately measure real user-
perceptible benefit.

7. THE RECOMMENDER ECOSYSTEM
We believe that more extensive publication and documen-

tation of methods is crucial to improving the recommender
ecosystem. Publishing the working code for new algorithms,
as well as the code to run and evaluate recommenders and
synthesize the results, will make it easier to apply and extend
research on recommender systems. We see two major aspects
of such publication:

• Publishing the source code for algorithmic improve-
ments, ready to run in a common evaluation environ-
ment, allows those improvements to be more easily
reused and understood. It also serves as a final source
for details which may be omitted, either inadvertently
or due to space constraints, from the paper.

• Publishing data sets, evaluation methods, and analy-
sis code (e.g. R scripts for producing charts and sum-
maries) allows recommender research to be more readily
reproduced and compared.

Open recommender toolkits such as LensKit provide a
common, accessible basis for this publication. When authors
provide LensKit-compatible implementations of new algo-
rithms, the community can easily try them on other data
sets or compare them against new proposed improvements.

To foster this direction in recommender research, we en-
courage anyone doing new recommender research with LensKit,
particularly publishing papers using it, to create a page in the
LensKit wiki12 describing their work providing any relevant
code. We are also interested in working with the community
to create a general repository for recommender systems re-
search, hosted by us or others, not limited to work done with
LensKit but upholding the same standards of public code and
reproducible evaluations. As an example, the complete code
for reproducing the evaluations in this paper is available13.

12
http://dev.grouplens.org/trac/lenskit/wiki/

13
http://dev.grouplens.org/hg/lenskit-recsys2011

We see this culture not only improving the state of recom-
mender systems research, but also aiding user-based evalu-
ation and other human-recommender interaction research.
Making algorithmic enhancements publicly available and eas-
ily reusable lowers the bar to using recent developments in
deployed systems, user studies, and novel research settings.

There remains the concern of the difficulty of publishing
code in restricted environments, such as industry R&D labs.
If experiments and algorithms are disclosed in sufficient detail
that they can be reimplemented, however, it should not be a
problem to complete that disclosure by providing working
code. The implementation need not be industrial strength
in scale or performance, but should demonstrate a correct
implementation of the algorithm as published in the paper14.
Of course these labs will often have filed a patent application
before publishing the paper; though algorithms in the public
domain may advance the field more rapidly, we propose no
restriction on publishing papers on patented algorithms.

Reproducibility includes datasets in addition to code. What
should be done about results that are based on proprietary
datasets? We propose that the community sets an expec-
tation that authors of published papers make a version of
their dataset available to the research community, so their
results can be reproduced. This dataset may be suitably
anonymized, require an application to receive the data, and
licensed only for non-commercial use, but must be available
for legitimate research purposes. In some cases, the data may
be so sensitive that not even an anonymized version can be
made available. In that case, we propose that authors be
expected to demonstrate their results on a suitable public
dataset in addition to the proprietary dataset. If the results
do not hold up on the public datasets, the reviewers should
be encouraged to assume the results are narrow, perhaps
only applying to the particular environment in which they
were achieved. It may well be that the results are so impres-
sive that even given this limitation the paper should still be
published; this decision should be left to the reviewers.

8. CONCLUSION AND FUTURE WORK
It is currently difficult to reproduce and extend research

results and algorithmic developments in recommender sys-
tems. A culture of open code and reproducible experiments
in common frameworks will move the recommender systems

14We should confess that we still receive an average of more
than one email a month asking for clarification of some details
of a paper we published in 1994 [15], so clearly not all written
descriptions of algorithms are sufficient!



community forward by fostering increased reuse and exten-
sion and making it easier to compare against prior results.
We are putting our money where our mouth is by making
available to the community LensKit, the LensKit Wiki, and,
as an example of reproducible results in this field, the LensKit
scripts to reproduce the research in this paper.

In this paper, we have presented LensKit, an open source
recommender systems toolkit intended to foster more open
recommender systems research. LensKit is a flexible plat-
form to enable researchers to easily implement and evaluate
recommender algorithms. LensKit can also serve as a pro-
duction recommender for small to medium scale lab or field
trials of recommender interfaces, which will benefit from the
finely-tuned implementations of the leading algorithms.

We have performed experiments demonstrating that the
LensKit implementations meet or beat the canonical imple-
mentations of the best-known algorithms. We have further
demonstrated that the platform is a valuable tool for ad-
dressing open questions in the field.

Development on LensKit is ongoing. In particular, we plan
to add several important features in the near future:

• Support for content-based and hybrid recommender
systems. The current algorithms in LensKit are all
collaborative filtering algorithms, but the API and in-
frastructure are designed to support more general types
of recommenders as well. We will be implementing
example hybrid content/collaborative algorithms to
demonstrate this capability.

• A framework for learning parameters through cross-
validation. Many algorithms have features, such as
learning rates and smoothing terms, that may be learned
through experimentation. We will provide a general
framework to learn parameters, including an evaluation
methodology to accurately measure the performance
of the resulting automatically-tuned algorithm.

• Additional evaluation strategies. In addition to the
train-test prediction evaluation, we will provide tempo-
ral evaluation methods, such as time-averaged RMSE
[12] and Profile MAE [4], and recommendation list eval-
uations. We will also extend LensKit with recommender
throughput evaluation strategies [13].

Our community is very successful today, but we believe
the recommender systems ecosystem approach to research
offers an opportunity for even greater success in the future.
The research community will benefit from increased pub-
lication of working implementations, easier access to the
state of the art, and a library of reproducible evaluations
on publicly-available data sets. We hope that LensKit and
the surrounding community and infrastructure, as well as
the other publicly-available recommender toolkits, will allow
recommender systems research to be more easily reproduced,
extended, and applied in real applications. Please join us!
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