The Demographics of Cool

Popularity and Recommender Performance for Different Groups of Users

GOAL

 Explore the role of demographics in recommender evaluation and decision-making
BACKGROUND

* Largest demographic groups dominates overall statistics
* Resulting decisions optimize performance for dominant group
* Per-group evaluation can yield better insights into recommender behavior [2]

RESEARCH QUESTIONS

 What changes about our assessment of relative or absolute recommender effectiveness when we consider
performance for different subgroups of users?

* Does popularity bias exacerbate demographic bias effect?

* How do popularity bias mitigations affect the demographic bias?

DATA & METHODS

* Datasets: MovielLens-1M (last with demographics) & LastFM 360K

 Metric: Mean Reciprocal Rank (MRR)

* Assessment: 5-fold cross-validation on (1) LensKit’s default strategy and (2) Bellogin’ s UAR strategy [1]

* Algorithms: Popular, recommending the most frequently rated or played items; Item-Item, an item-based
collaborative filter; User-User, a user-based collaborative filter; and FunkSVD, based on gradient descent matrix
factorization technique

* \Variations: ‘-E’ for explicit-feedback recommenders (MovielLens); ‘-B’ for binary implicit-feedback recommenders
(item was rated or played); and ‘-C’ for implicit-feedback recommenders that consider the number of times an
artist was played (LastFM)

FINDINGS
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Results of basic runs of experiments Results of basic runs of UAR experiments

 We find that recommenders are not equally good for all users in predictable and socially-relevant ways:
* A number of strategies achieve moderately higher accuracy metric values for dominant demographic groups,
causing an algorithm’s performance to increase without delivering benefit to smaller user subgroups
* Demographic bias has a complex interaction with mitigation strategies for other offline evaluation ailments
* A uniform item strategy results in disproportionately higher accuracy values for users in some smaller subgroups
* Assigning equal weight to user groups can change configuration decisions
* There is a need for careful and multi-faceted consideration of recommender system behavior across a range of
both users and items.
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