
Candidate Set Sampling for Evaluating Top-N
Recommendation

Ngozi Ihemelandu
Department of Computer Science

Boise State University
Boise, USA

ngoziihemelandu@u.boisestate.edu

Michael D. Ekstrand
Department of Computer Science

Boise State University
Boise, USA

ekstrand@acm.org
(Now at Drexel University)

Abstract—The strategy for selecting candidate sets — the set
of items that the recommendation system is expected to rank for
each user — is an important decision in carrying out an offline
top-N recommender system evaluation. The set of candidates is
composed of the union of the user’s test items and an arbitrary
number of non-relevant items that we refer to as decoys. Previous
studies have aimed to understand the effect of different candidate
set sizes and selection strategies on evaluation. In this paper, we
extend this knowledge by studying the specific interaction of
candidate set selection strategies with popularity bias, and use
simulation to assess whether sampled candidate sets result in
metric estimates that are less biased with respect to the true
metric values under complete data that is typically unavailable
in ordinary experiments.

Index Terms—recommender system, offline evaluation, candi-
date set sampling

I. INTRODUCTION

Recommender systems are evaluated online using tech-
niques such as A/B testing, as well as offline using historic
data and evaluation performance metrics for tasks such as
rating prediction and top-N recommendation. In the majority
of published research, algorithms are compared offline [1].

Offline evaluations require multiple experimental design
decisions; one of these is the strategy for selecting candidate
sets (also known as target item sampling [2]). The candidate
set (Cu) is the set of items that the recommendation system
is expected to rank for each user in a top-N experiment. The
default practice is to select all items except items that the user
has interacted with (I \ Itrainu), where I is the set of all items
and Itrainu is the set of items for which a training rating by
user u is available. In this paper, we refer to all items in Cu

that are not in Itestu as decoys (Idecoyu) [3]. Itestu is the set of
items for which a test rating by user u is available. Therefore,
Cu = Itestu ∪ Idecoyu . Candidate sets that are composed of
the union of test items and an arbitrary number of randomly-
sampled non-relevant items – (Itestu ∪ Idecoyu) – are sometimes
seen in evaluation reports [4]–[7].

This work is partially supported by the National Science Foundation under
Grant IIS 17-51278.

This paper has been published in Proceedings of the 2023 IEEE Inter-
national Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT). This copy is provided for your personal use as permitted by the
IEEE Author Agreement. The version of record is available from IEEE at
https://dx.doi.org/10.1109/WI-IAT59888.2023.00018.

There have been studies that aimed to understand the effect
of different candidate set sizes and selection strategies [2], [3],
[8]. We extend this knowledge by studying specific interaction
of candidate set selection strategies with popularity bias.

Popular items are more likely to be seen by users, rated by
users, and are recommended even more frequently than its use-
fulness as a signal in recommendation warrants. This impacts
logged data used for training and evaluating recommender
systems such that a small fraction of popular items accounts
for most of the user-item interactions [9]. Hence, recommender
system data typically follow long-tailed or power-law distribu-
tions. Popularity bias occurs when evaluation metrics that use
test data for evaluation favor recommender systems that tend
to recommend popular items, and may penalize recommenders
that produce less popular but more novel recommendations
that may also be relevant.

Ekstrand and Mahant [3] analytically demonstrated that
randomly sampled decoys exacerbates popularity bias in eval-
uation. Evaluation metrics generally assess the recommender’s
ability to separate test items from decoy items in the candidate
set. Test items are (approximately) drawn from the popularity-
weighted distribution under most train-test splitting schemes.
When decoy items are drawn uniformly, they are drawn
from a different distribution that places much less weight on
popularity, so popularity is a more useful signal for detecting
which distribution a particular candidate item came from.
However, they did not observe evidence of the exacerbation
of popularity bias effect in their empirical experiments.

In this paper, we explore this further by empirically investi-
gating the combined effect of the dispersion of interactions
(e.g. ratings) across items, and the different candidate set
selection strategies on popularity bias. We analyze the effects
to determine which factors worsens popularity bias, and which
mitigates it. We specifically look into three strategies:

• uniformly-sampled decoys
• popularity-weighted sampled decoys
• full candidate set (Cu = Itestu ∪ Idecoyu = I \ Itrainu)
Even if we can reduce popularity bias exacerbation in

the sampling strategy, that is not enough to demonstrate
whether sampled candidate sets are useful. Krichene et al. [10]
argued that they are not, as metrics computed from sampled
candidate sets (which they call ”sampled metrics”) often do

https://dx.doi.org/10.1109/WI-IAT59888.2023.00018

not agree with the metrics computed with full candidate sets.
In terms of statistical estimators, it means that the sampled
metric is not an unbiased estimator of the metric computed
with full candidate sets. However, it is not clear that this
is the correct estimand: recommender systems evaluation is
subtantially affected by the fact that evaluation data is missing-
not-at-random [11]. Tian and Ekstrand [12] used simulation to
generate both complete and observed preference data, allowing
the metrics over observed data — as would be computed in a
real experiment — to be compared with the equivalent metric
values if complete evaluation data were available. We apply
this approach to examine whether computing metrics over
observed data using sampled or full candidate sets results in
a better estimator of the effectiveness metric values complete
data would yield. This is, we argue, a better assessment of
the usefulness of sampled metrics for predicting real-world
performance.

To understand the usefulness of candidate set sampling we
address the following questions:
RQ1 Does uniform sampling of decoys exacerbate popularity

bias in evaluation compared to full candidate sets?
RQ2 Does popularity-weighted sampling of decoys mitigate

popularity bias exacerbation?
RQ3 Does uniform or popularity-weighted sampling of the

decoys improve the estimation of effectiveness of rec-
ommender system in terms of the bias of the computed
metric with respect to the value computed over complete
relevance data?

We show that popularity bias is exacerbated when the pop-
ularity concentration of the dataset is high, the recommender
algorithm has a high propensity to recommend popular items,
and the decoys are sampled uniformly. We find that popularity-
weighting of the decoys may help mitigate this exacerbation.

We find that with the full candidate set, observed data
significantly underestimates the effectiveness measure for all
algorithms. The estimation improves with the uniformly sam-
pled, and popularity-weighted candidate sets indicating that
candidate set sampling is indeed useful for evaluation.

II. BACKGROUND AND RELATED WORK

It is common practice to evaluate recommender systems for
top-N recommendation task, where the recommender system
is required to suggest a few items to users that they would find
appealing and relevant [13]. Their performance of this task is
measured with metrics such as nDCG, recall, and hit rate.

The recommender system ranks items from a candidate set.
The candidate set is made up of the union of two disjoint sets:
the test items, which the user has rated in the test data, and
the decoy items, which are items the user has not rated (Cu =
Itestu ∪ Idecoyu). Historically, the most typical configuration has
been to use all items that the user did not rate in the training
data as the candidate set (Cu = I \ Itrainu).
Idecoyu = I \ Itestu \ Itrainu

P [i ∈ Idecoyu] ∝ 1
P [i ∈ Idecoyu] ∝ |Ri|

Instead of considering all items as candidates for ranking,
Koren [4] used candidate sets for each user that were made
up of 1000 randomly selected decoys (or non-relevant) test
items and one rated test item. In other words, for each test
item i, rated by user u, an additional 1000 random items were
selected and the ratings by u for i predicted as well as for
the other 1000 unrated items. They wanted to find the relative
place of the test items within the total order of test items
sorted by predicted ratings for a specific user. They provided
no justification for using 1000 decoys.

Bellogı́n et al. [14] considered candidate set sampling as an
alternative design in their study of the implication of applying
information retrieval methodologies to recommender system
evaluation. They considered different designs of candidate
set sampling of which Koren’s [4] approach was one. They
analyzed the effect of the number of unrated items as a con-
figuration parameter in candidate set sampling on sparsity, and
metric values. They also considered the effect of popularity
distribution skewness on popularity bias. However, in this
study, we specifically consider the combined effect of the
popularity concentration of the dataset, and the candidate set
selection strategy on popularity bias.

As we discussed in section I, Krichene et al. [10] argued that
metrics computed from sampled candidate sets often do not
agree with the metrics computed with full candidate sets. They
proposed metric corrections to attenuate this effect, taking full
rankings as the reference

Cañamares and Castells [15] confirmed some of Krich-
ene et al.’s [10] findings that systems are ranked differently
when metrics are computed from sampled candidate sets vs
full candidate sets. However, they showed that using a full
candidate set may not necessarily be the preferable option,
and a candidate set that is too small may indeed weaken
the reliability and informativeness of the comparison between
systems. They also sought to give guidance or understanding
of what an appropriate decoy size would be and which size
may result in more informative evaluation.

Like Cañamares and Castells [15], Ekstrand and Mahant [3]
sought to determine how to select an appropriate decoy size.
They showed analytically that uniformly-sampled random de-
coys exacerbates popularity bias, but did not observe empirical
evidence of this effect in their experiments. This motivates our
work of empirically studying the effect that the sampling of
decoys has on popularity bias in evaluation.

Candidate set sampling is a more common practice in
sequential recommendation models [16].

The contributions of this research are: understanding and
mitigating the amplification of popularity bias caused by
uniform candidate set sampling, and assessing whether it
improves the accuracy of estimating system effectiveness as
it would be measured with complete relevance data.

III. CANDIDATE SAMPLING AND POPULARITY BIAS

In this section, we seek to address RQ1 and RQ2.

TABLE I
SUMMARY OF DATA SETS.

Dataset # Ratings # Users # Items Density Gini-Index

ML-100K 100,000 1,000 1,682 6.3% 0.6290
ML-25M 25,000,000 162,000 59,047 0.26% 0.8922

Yahoo!R3 - Train 300,000 15,400 1,000 1.9% 0.5595
Yahoo!R3 - Test 54,000 5,400 1,000 1% 0.0798

0.0000

0.0005

0.0010

0.0015

0 500 1000 1500

item

de
ns

ity

Gini−index:0.6290 Data:ml−100k

0.00000

0.00005

0.00010

0.00015

0.00020

0 50000 100000 150000 200000

item

de
ns

ity

Gini−index:0.8922 Data:ml−25m

0.00000

0.00025

0.00050

0.00075

0.00100

0 250 500 750 1000

item

de
ns

ity

Gini−index:0.0798 Data:R3−test

0e+00

5e−04

1e−03

0 250 500 750 1000

item

de
ns

ity

Gini−index:0.5595 Data:R3−train

Fig. 1. Distribution of ratings over items. The y-axis defines the probability
density estimate per unit value of items(x-axis)

A. Data

To get the evaluation data needed for the study, we per-
formed an offline evaluation of top-N recommendations while
varying the candidate set selection strategy. We used three
publicly-available data sets (two from MovieLens [17] — ML-
100K and ML-25M — and Yahoo! R3 from Yahoo! Webscope
[18]), summarized in Table I. The Yahoo! R3 dataset consists
of ratings for music entered by users in the Yahoo! LaunchCast
streaming service. It includes: missing not at random (MNAR)
training ratings, and missing at random (MAR) test ratings.

For each dataset:

• we split the set of test users into 5 subsets.
• for each subset of test users:

– we select 20% of a test user’s interactions for testing,
and use the rest for training.

For the Yahoo! R3, we only split the MNAR dataset(training
ratings) into test and train datasets. We then use this test dataset
to compute the regular biased metric, and the MAR test ratings
to compute unbiased metric value.

We measured the popularity concentration of ratings in each
data set by computing the Gini index of the number of ratings
per item, ranging from 0 (ratings uniformly distributed across
items) to 1 (maximum inequality); see Table I and Figure 1.

B. Algorithms

For each of the training partitions, we trained five recom-
mender system algorithms with the default hyper-parameters
values using LensKit for Python (version 0.13) [19]. These
include three collaborative filtering algorithms (Item k-NN
(ItemItem) [20] and User-based k-NN (UserUser) [21], both
in explicit-feedback mode, along with Implicit Matrix Fac-
torization ALS (ImplicitMF) [22]) and two non-personalized
algorithms (Popular and Random). Non-personalized recom-
menders generate list of items for a user regardless of the
user’s preferences. They are usually used as baseline for more
complex personalized algorithms.

C. Candidate Set Sampling

We configured and implemented three candidate set selec-
tion strategies:

• full candidate set: Cu = I \ Itrainu (this is the default for
candidate set selection).

• uniformly-sampled candidate set: Cu = Itestu ∪ Idecoyu

with Idecoyu sampled uniformly at random from I \Itrainu .
• popularity-weighted candidate set: Cu = Itestu ∪ Idecoyu

with each item in Idecoyu sampled without replacement
from I\Itrainu with probability proportional to the number
of users who have rated it.

We composed the candidate sets for different decoy sizes
[10, 20, 50, 100, 200, 500, 1000, 2000]. We generated ranked
recommendations for each test user from each of the candidate
set (Full, popularity-weighted, and uniformly sampled).

D. Evaluation Metrics

We measured the utility of each recommendation list with
nDCG, precision, recall, and reciprocal rank as implemented
by LensKit. We used a cutoff of 10 as the recommendation
list metric depth.

We measured the prevalence of popular items in a recom-
mendation list by computing the mean popularity rank: the
average of the ranks of recommended items by their popularity
(where rank 1 is the least-popular item). An algorithm’s
popularity tendency is measured by the average of the mean
popularity rank of the lists it produced.

E. Results

In this subsection, we present findings of the combined ef-
fect of the factors: candidate set selection strategy, distribution
of ratings over items (measured in Gini index), and algorithm
popularity tendency on popularity bias.

First, we define the term popularity-prone algorithms. This
refers to algorithms that have the tendency to recommend
popular items disproportionately to their relevance to users’
preferences. This tendency is determined by the prevalence
of popular items in the recommendation list they produce
as described in subsection III-D. From Figure 2 we observe
very high popularity scores for the ImplicitMF and Popular
algorithms across different candidate set sizes. The result
shown is based on the ML-25M dataset but we observed
similar patterns with other datasets.

20 100 500 Full

m
l25m

0

20000

40000

60000

Algorithm

Po
pu

la
rit

y
sc

or
e(

re
co

m
m

en
da

tio
n

lis
t)

Algorithm ImplicitMF ItemItem Popular Random UserUser

Fig. 2. Popularity score is the measure of the prevalence of popular items
in the recommendation list produced by each recommender algorithm. The
recommendation lists are generated from candidate sets with decoy sizes [20,
100, 500] and the full candidate set.

Figure 3 shows the result of the empirical experiment for
RQ1 and RQ2. As can be seen, the performance of all
algorithms declines at approximately similar rates on each
of the datasets as the decoy size of the candidate set in-
creases and tends towards the Full set except for those of the
popularity-prone algorithms. When the decoys are uniformly
sampled, we observe that the performance of popularity-prone
algorithms remain consistently high across the decoy sizes,
on datasets with high Gini coefficient (ML-25M, Ml-100k,
Yahoo!R3[MNAR]). This is especially pronounced on the ML-
25M dataset where we observe high performance before we
see a sharp drop in performance for the Full set.

We also observe that system ranking remains consistent
across datasets. However, the effect sizes decreases as the de-
coy size increases, and in some cases they are not statistically
significant such as on the the Yahoo!R3[MAR] dataset.

F. Discussion

In Figure 3 we see a pattern of behavior by the al-
gorithms that addresses the question: does uniform sam-
pling of the decoys exacerbate popularity bias in evalua-
tion? The performance of the popularity-prone algorithms
on the datasets with high Gini coefficient(ML-100K, ML-
25M, Yahoo!R3[MNAR]) remain consistently high as the
decoy size increases contrarily to the behavior of the other
algorithms. This behavior is especially pronounced on the
ML-25M dataset which has a Gini coefficient of 0.8922. A
Gini coefficient of 0.8922 implies that majority of the ratings
are concentrated over a few popular items. This implies two
things: (1) most items have little or no ratings and are assumed
to be non-relevant; (2) majority of the test items are popular
because test items are rated.

We may recall that the candidate set consists of the test
items and the decoys. When the decoys are uniformly sampled,
it most likely consist of unrated items (assumed to be non-
relevant). The evaluation protocol generally assesses the ability
of a recommender algorithm to differentiate between the test
items and the decoys. The popularity-prone algorithms have

a high propensity of selecting popular items; therefore, they
are able to pick out the popular items from a collection of
unpopular items (unrated or with few ratings) irrespective of
how many unpopular items are in the candidate set. Hence,
by just picking the popular items they are rewarded by the
evaluation protocol.

We observe a sharp decline in their performance with the
Full candidate set. This is because with the Full candidate set
it becomes difficult to just pick out the popular items from the
unpopular ones. The decoy component of the Full candidate set
consists of all items that a user has not interacted with. Hence,
the decoys do not mainly consists of unrated unpopular items
as is the case with uniformly sampled decoys.

This behavior of the popularity-prone algorithms (Implic-
itMF and Popular) on datasets with high Gini index show an
exacerbation of the popularity bias in evaluation. This result
is in agreement with the analytical findings from [3] that the
uniform sampling of the decoys may exacerbate popularity
bias in evaluation.

We also find patterns in algorithms behavior in Figure 3 that
addresses the question: does popularity-weighted sampling of
the decoys mitigate the exacerbation of popularity bias? We
observe that when the decoys are sampled by popularity-
weighting, all algorithms behave alike: their performance
decline as the decoy size increases and tends to the Full
candidate set.

Therefore, when the Gini index of a dataset is high, and
our algorithm is popularity-prone, we use popularity-weighted
sampling of the decoys to ensure that the test and decoy items
come from approximately the same marginal distribution. This
is demonstrated in figure 3, we see that when we sample
the decoys by popularity weighting, the popularity prone
algorithms are now forced to differentiate between the relevant
popular items and the unrated popular items. This behavior is
also observed with the Yahoo!R3[MAR] dataset (with Gini
index 0.0798 — ratings are approximately evenly distributed
across items). Hence, popularity weighting can help mitigate
the exacerbation of popularity bias that comes as a result of
uniformly sampling the decoys.

IV. ESTIMATING BIAS USING SIMULATION

Having established that popularity-weighting sampled de-
coys can help reduce the effect of making popularity bias
worse, we now turn to RQ3, and use a simulation study to
assess whether sampled candidate sets — either uniform or
popularity-weighted — help correct for missing data that in-
duces bias between the metric scores computed with observed
data and those that would arise from complete test data if it
was available.

Bias, in the statistical sense, is when the estimator differs
in expectation from the estimand. In recommender systems
metrics, this results in the observed evaluation metric over- or
under-estimating the true effectiveness score of an algorithm as
it would be computed with a particular metric with complete
relevance data available; we are not, in this work, concerned
with mapping to online effectiveness measurements. We used

Uniform Popularity−Weighted

m
l100k

G
=0.6290

m
l25m

G
=0.8922

R
3_M

A
R

G
=0.0798

R
3_M

N
A

R
G

=0.5595

20 100 500 1000 2000 Full 20 100 500 1000 2000 Full

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

decoy_size

nd
cg

@
10

Algo ImplicitMF
[*****]

ItemItem
[***]

Popular
[****]

Random
[*]

UserUser
[**]

Uniform Popularity−Weighted

m
l100k

G
=0.6290

m
l25m

G
=0.8922

R
3_M

A
R

G
=0.0798

R
3_M

N
A

R
G

=0.5595

20 100 500 1000 2000 Full 20 100 500 1000 2000 Full

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

decoy_size

re
ci

p_
ra

nk
@

10

Algo ImplicitMF
[*****]

ItemItem
[***]

Popular
[****]

Random
[*]

UserUser
[**]

Uniform Popularity−Weighted

m
l100k

G
=0.6290

m
l25m

G
=0.8922

R
3_M

A
R

G
=0.0798

R
3_M

N
A

R
G

=0.5595

20 100 500 1000 2000 Full 20 100 500 1000 2000 Full

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

decoy_size

pr
ec

is
io

n@
10

Algo ImplicitMF
[*****]

ItemItem
[***]

Popular
[****]

Random
[*]

UserUser
[**]

Uniform Popularity−Weighted

m
l100k

G
=0.6290

m
l25m

G
=0.8922

R
3_M

A
R

G
=0.0798

R
3_M

N
A

R
G

=0.5595

20 100 500 1000 2000 Full 20 100 500 1000 2000 Full

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

decoy_size

re
ca

ll@
10

Algo ImplicitMF
[*****]

ItemItem
[***]

Popular
[****]

Random
[*]

UserUser
[**]

Fig. 3. Ranking systems by the nDCG, reciprocal rank, precision and recall metrics computed for recommendation lists produced from popularity-weighted
and uniform sampled candidates. The asterisks indicate the relative level of tendency to recommend popular items.

simulation to estimate the bias of an evaluation metric with
different candidate set selection strategies. The simulation
proceeds in three stages:

1) Generate synthetic users and items with preference re-
lations so we know all items a user would like.

2) Simulate an observation process to observe user prefer-
ence for a subset of the items they would like (like a
real system only sees a subset of a user’s preferences).

3) Run a recommender experiment on the synthetic obser-
vations, but have the complete synthetic preference data
from (1) available for evaluation.

We adopted the latent Dirichlet allocation (LDA) [23]
true preference simulation model implemented in Tian and
Ekstrand [12], and tuned to mimic the ML1M movielens
dataset. LDA is a Bayesian generative probabilistic model
for collections of discrete data such as text corpora. It is an
example of a latent feature model that provides a mechanism
for representing correlations between items. Exploiting these

correlations is fundamental to many recommendation tech-
niques. LDA assumes the following generative process for K
latent features [24, pg. 20 description from original]:

1) Draw K feature-item vectors ϕK ∈ [0, 1]|I| from
Dirichlet(β)

2) For each user:
a) Draw a latent feature vector θu ∈ [0, 1]K from

Dirichlet(α)
b) Draw nu (number of items) from Poisson(λ)
c) Draw items i1, ..., inu liked by user u by draw-

ing feature kx ∼ Multinomial(θu) and ix ∼
Multinomial(ϕkx

)

3) De-duplicate user-item pairs to produce implicit user
preference samples.

A. Experiment

First, we describe the experiment (see Figure 5) that ad-
dresses RQ3: Does uniform or popularity-weighted sampling

ImplicitMF ItemItem Oracle Popular Random

nD
C

G
B

ias

0.00

0.25

0.50

0.75

1.00

−0.8

−0.6

−0.4

−0.2

0.0

Candidate Set Type (Decoy size = 1000)

candidate_set_type Full popularity_weighted uniform_sampled

ImplicitMF ItemItem Oracle Popular Random

nD
C

G
B

ias
0.00

0.25

0.50

0.75

1.00

−0.8

−0.6

−0.4

−0.2

0.0

Candidate Set Type (Decoy size = 100)

candidate_set_type Full popularity_weighted uniform_sampled

ImplicitMF ItemItem Oracle Popular Random

recip_rank
B

ias

0.00

0.25

0.50

0.75

1.00

−0.8

−0.6

−0.4

−0.2

0.0

Candidate Set Type (Decoy size = 1000)

candidate_set_type Full popularity_weighted uniform_sampled

ImplicitMF ItemItem Oracle Popular Random

recip_rank
B

ias

0.00

0.25

0.50

0.75

1.00

−0.8

−0.6

−0.4

−0.2

0.0

Candidate Set Type (Decoy size = 100)

candidate_set_type Full popularity_weighted uniform_sampled

Fig. 4. The top row of bar charts show the nDCG values for recommendation lists generated by each of the algorithms from the full, uniformly sampled,
and popularity-weighted candidate sets using the held-out observable test data as ground truth. The horizontal reference lines show the measure (nDCG,
reciprocal rank) values for recommendation lists obtained from the full candidate set using the true preference dataset as ground truth. The bottom row of bar
charts show the bias of the (nDCG, reciprocal rank) metric with reference to the full candidate set. Bias = Mobs −Mtruth

RecommendationsCandidate Set

Training

Test

Observable Data
Sampler

Recommender
Model

Analysis

Compare &
Measure

True Preference
Simulator

Fig. 5. Simulation process for offline experiment

of the decoys improve the estimation of effectiveness perfor-
mance of recommender system in terms of the bias of the
computed metric with respect to the value computed over
complete relevance data?

To estimate bias, we conduct the following experiment:

1) Use the LDA model to generate the true preference
dataset, and from the true preference dataset, we sample
sets of observable rated items for each user.

2) Use the popularity observation sampler implemented in
[12] to sample the observations. This sampler opera-

tionalizes the idea that users are more likely to rate
popular items.

3) Split the observations into train and test datasets.
4) Use the train dataset to train six models: two person-

alized algorithms (ImplicitMF and ItemItem in implicit
feedback mode); and three non-personalized algorithms
(Popular, Oracle, and Random). The Oracle recom-
mender uses the true preference data from (1) to generate
perfect recommendations.

5) Use trained models to generate a 50-item ranked rec-
ommendation list for each test user from each of the
candidate sets (full, popularity-weighted, and uniformly
sampled), using a decoy size of 1000.

6) Compute the nDCG measure for the recommendation
lists generated from the full candidate set by first using
the held-out observable test data as ground truth, and
again with the simulated true preference data as ground
truth thus obtaining the metric values Mobs

full and M truth

respectively.
7) Use the held-out observable test data as ground truth to

obtain metric values Mobs
unif and Mobs

pop for recommen-
dation lists generated from the uniformly sampled and
popularity-weighted candidate sets.

8) Compute the bias as the difference between each metric
value [Mobs

full , Mobs
unif , M

obs
pop] and M truth.

We repeat the experiment 500 times.

B. Results and Discussion

From Figure 4 we notice that with the full candidate
set, observed data significantly underestimates the nDCG
and reciprocal rank measures for all algorithms. The estima-
tion improves with the uniformly sampled, and popularity-
weighted candidate sets but is less biased with the uniformly
sampled candidate set. We observe that the systems are ranked
consistently but the bias varies from algorithm to algorithm
with the nDCG metric. This poses a significant problem for
evaluation because if the bias were the same, then we could
trust that relative performance is preserved.

V. CONCLUSION

The findings of this study provides valuable insight into the
effect of candidate set sampling on popularity bias, and their
usefulness as a better estimator of effectiveness metric value
compared with using the full candidate set. We empirically
demonstrated that sampling the decoys of the candidate set
uniformly worsens popularity bias in evaluation, and that
sampling the decoys by popularity weighting seems to reduce
the exacerbation of popularity bias. These findings are consis-
tent with the analytical findings of previous research [3] on
candidate selection strategies.

Using simulation, we showed that with the full candidate
set, the effectiveness measure for all algorithms is significantly
underestimated. However, the estimation improves with the
uniformly sampled and popularity-weighted candidate sets in-
dicating the usefulness of candidate set sampling in evaluation.
This is in contrast with findings from [10] that candidate set
reduction should not be used because it may affect comparative
evaluation.

Given that popularity weighting seems to reduce the exac-
erbation of popularity bias, and that estimation improves with
sampled candidate set, we recommend that decoys be sampled
by popularity-weighting.

However, though the simulation result shows that estimation
with the uniformly sampled candidate set is less biased than
estimation with popularity-weighted candidate set, this obser-
vation needs to be further investigated. We need to ascertain
what influence, if any, the high popularity concentration of the
ML-1M dataset which the simulation mimics may have had,
as well as the impact of limitations in the simulation’s ability
to mimic the target data set.

There are many open questions that should be examined
in future work, including: effect of other sampling strategies,
how big the candidate set should be, the change in bias from
system to system, and the bias impact on evaluation.

REFERENCES

[1] P. Cremonesi and D. Jannach, “Progress in recommender systems
research: Crisis? what crisis?” AI Magazine, vol. 42, no. 3, pp. 43–54,
2021.

[2] R. Cañamares, P. Castells, and A. Moffat, “Offline evaluation options for
recommender systems,” Information Retrieval Journal, vol. 23, no. 4,
pp. 387–410, 2020.

[3] M. D. Ekstrand and V. Mahant, “Sturgeon and the cool kids: Problems
with random decoys for top-n recommender evaluation,” in The Thirtieth
International Flairs Conference, 2017.

[4] Y. Koren, “Factorization meets the neighborhood: a multifaceted col-
laborative filtering model,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2008, pp. 426–434.

[5] Q. Zhang, L. Cao, C. Zhu, Z. Li, and J. Sun, “Coupledcf: Learning
explicit and implicit user-item couplings in recommendation for deep
collaborative filtering,” in IJCAI International Joint Conference on
Artificial Intelligence, 2018.

[6] W. Cheng, Y. Shen, L. Huang, and Y. Zhu, “Dual-embedding based
deep latent factor models for recommendation,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 15, no. 5, pp. 1–24, 2021.

[7] T. Ebesu, B. Shen, and Y. Fang, “Collaborative memory network
for recommendation systems,” in The 41st international ACM SIGIR
conference on research & development in information retrieval, 2018,
pp. 515–524.

[8] A. Bellogin, P. Castells, and I. Cantador, “Precision-oriented evaluation
of recommender systems: an algorithmic comparison,” in Proceedings of
the fifth ACM conference on Recommender systems, 2011, pp. 333–336.

[9] H. Abdollahpouri and M. Mansoury, “Multi-sided exposure bias in
recommendation,” arXiv preprint arXiv:2006.15772, 2020.

[10] W. Krichene and S. Rendle, “On sampled metrics for item recommen-
dation,” Communications of the ACM, vol. 65, no. 7, pp. 75–83, 2022.

[11] H. Steck, “Training and testing of recommender systems on data missing
not at random,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2010, pp. 713–
722.

[12] M. Tian and M. D. Ekstrand, “Estimating error and bias in offline
evaluation results,” in Proceedings of the 2020 Conference on Human
Information Interaction and Retrieval, 2020, pp. 392–396.

[13] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recommender
algorithms on top-n recommendation tasks,” in Proceedings of the fourth
ACM conference on Recommender systems, 2010, pp. 39–46.

[14] A. Bellogı́n, P. Castells, and I. Cantador, “Statistical biases in informa-
tion retrieval metrics for recommender systems,” Information Retrieval
Journal, vol. 20, pp. 606–634, 2017.

[15] R. Cañamares and P. Castells, “On target item sampling in offline
recommender system evaluation,” in Proceedings of the 14th ACM
Conference on Recommender Systems, 2020, pp. 259–268.

[16] S. Latifi, D. Jannach, and A. Ferraro, “Sequential recommendation:
A study on transformers, nearest neighbors and sampled metrics,”
Information Sciences, vol. 609, pp. 660–678, 2022.

[17] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” Acm transactions on interactive intelligent systems (tiis), vol. 5,
no. 4, pp. 1–19, 2015.

[18] B. M. Marlin and R. S. Zemel, “Collaborative prediction and ranking
with non-random missing data,” in Proceedings of the third ACM
conference on Recommender systems, 2009, pp. 5–12.

[19] M. D. Ekstrand, “Lenskit for python: Next-generation software for
recommender systems experiments,” in Proceedings of the 29th ACM
International Conference on Information & Knowledge Management,
2020, pp. 2999–3006.

[20] M. Deshpande and G. Karypis, “Item-based top-n recommendation
algorithms,” ACM Transactions on Information Systems (TOIS), vol. 22,
no. 1, pp. 143–177, 2004.

[21] J. Herlocker, J. A. Konstan, and J. Riedl, “An empirical analysis of
design choices in neighborhood-based collaborative filtering algorithms,”
Information retrieval, vol. 5, pp. 287–310, 2002.

[22] G. Takács, I. Pilászy, and D. Tikk, “Applications of the conjugate gradi-
ent method for implicit feedback collaborative filtering,” in Proceedings
of the fifth ACM conference on Recommender systems, 2011, pp. 297–
300.

[23] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[24] M. Tian, “Estimating error and bias of offline recommender system
evaluation results,” 2019.

	Introduction
	Background and Related Work
	Candidate Sampling and Popularity Bias
	Data
	Algorithms
	Candidate Set Sampling
	Evaluation Metrics
	Results
	Discussion

	Estimating Bias using Simulation
	Experiment
	Results and Discussion

	conclusion
	References

