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Abstract 

Top-N evaluation of recommender systems, typically carried 
out using metrics from information retrieval or machine 
learning, has several challenges. Two of these challenges are 
popularity bias, where the evaluation intrinsically favors al-
gorithms that recommend popular items, and misclassified 
decoys, where items for which no user relevance is known 
are actually relevant to the user, but the evaluation is unaware 
and penalizes the recommender for suggesting them. One 
strategy for mitigating the misclassified decoy problem is the 
one-plus-random evaluation strategy and its generalization, 
which we call random decoys. In this work, we explore the 
random decoy  strategy through both a theoretical treatment 
and an empirical study, but find little evidence to guide its 
tuning and show that it has complex and deleterious interac-
tions with popularity bias. 

Introduction   

Offline evaluation of recommender system performance re-

lies on two families of metrics: error metrics that assess the 

recommender’s ability to predict unknown ratings, and Top-

N metrics that judge its ability to identify and retrieve items 

relevant to the user. In recent years, top-N metrics have 

gained dominance as they more accurately reflect the tasks 

that recommenders most often perform. They are used both 

to assess recommender quality in offline evaluation and to 

train and pre-validate recommenders for online applications. 

The common metrics, such as precision & recall, AUC, 

nDCG, MAP, and MRR, come from information retrieval 

(IR) and machine learning (ML) contexts (Gunawardana 

and Shani 2009). However, the high data sparsity in recom-

mender applications – and in many modern IR and ML 

settings – violate key assumptions these metrics make about 

the coverage of available relevance data. The extent and im-

pact of these violations has not been thoroughly explored. 
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 While the basic structure of offline recommender evalua-

tion is well-known, for the purposes of establishing useful 

terminology we rehearse it as follows: 

1. Partition data –records of users rating, purchasing, or 

clicking on items – into training and test sets. For sim-

plicity, we will call these ratings when the user provides 

an explicit preference judgement of an item, and pur-

chases when the user takes an action to adopt the item 

from which preference is inferred (implicit feedback). 

2. Train an algorithm and its model on the training data. 

3. Use the trained model to produce recommendations for 

users with test data. Recommendations are produced from 

a candidate set. The exact constitution of the candidate 

set varies (Bellogin, Castells, and Cantador 2011); for the 

purposes of our discussion, we consider it to be the union 

of two disjoint sets of items: the test items, which the user 

has rated or purchased in the test data, and the decoy 

items, which are items the user has not rated. 

4. Measure the recommender’s quality using standard met-

rics from IR and ML. When rating data is available, 

metrics such as nDCG and NDPM allow measurement of 

the consistency between the recommender’s rankings and 

those induced by user ratings; when considering unary 

purchase data, the metrics effectively assess the recom-

mender’s ability to separate test items from decoy items. 

Items the user has purchased are assumed relevant; the 

decoy items, about which no information is available, are 

assumed to be irrelevant. 

 These metrics work best on a fully-coded corpus, where 

relevance judgements are available for all items, or a prob-

abilistic approximation of such a corpus built with 

techniques such as pooling (Buckley and Voorhees 2004). 

However, recommender data sets such as those from Mov-

ieLens (Harper and Konstan 2015) and BookCrossing 

 



(Ziegler et al. 2005), commonly used as benchmark data sets 

for recommender system evaluation, are missing relevance 

judgements for most user-item pairs. Further, due to the 

highly subjective nature of relevance in recommendation 

tasks, most methods used in IR to expand the data set’s cov-

erage do not apply and even ‘more complete’ data such as 

that collected in commercial settings will have similar prob-

lems. When we apply IR metrics to recommender systems, 

therefore, we are violating the assumptions necessary to 

make them correct and meaningful. 

 This assumption failure results in at least two specific 

problems with recommender evaluation: 

 Popularity bias, where evaluations favor recommend-

ers that tend to recommend popular items. While 

popularity is a useful signal in recommendation, an ex-

cessive emphasis on it may penalize recommenders that 

produce more novel, but equally satisfactory, recom-

mendations. 

 Misclassified decoys, where one or more of the decoy 

items is of interest to the user. If the user did not rate or 

purchase the item because they did not know about it, 

then not only is the recommendation relevant, it could 

be a better recommendation than one of the test items 

because it would help the user find something they like 

that they didn’t know about before, whereas they did 

know about the test item somehow. 

 Misclassified decoys are particularly pernicious because 

they make it near-impossible to evaluate the recommender’s 

effectiveness at exposing the user to new material. If we 

were able to develop a perfect recommender that could ac-

curately identify items the user would like but is unaware of, 

such a recommender would likely lose in accuracy metrics 

because it prefers such excellent items over test items. 

 Bellogin explores a number of solutions to the popularity 

bias problem (Bellogin 2012), such as popularity-stratified 

sampling for test items. For the misclassified decoy prob-

lem, there are a number of solutions in the information 

retrieval literature (Yilmaz and Aslam 2006) in addition to 

the one-plus-random protocol (Cremonesi, Koren, and 

Turrin 2010; Koren 2008).  Of the IR solutions we have been 

able to identify, however, only rank effectiveness is appli-

cable to recommender systems, as pooling requires an 

objective concept of relevance and inference begs the ques-

tion by effectively requiring a perfect recommender in order 

to evaluate a recommender.  

 In this paper, we examine the random decoys protocol, a 

generalization of the one-plus-random protocol. In this ex-

perimental protocol, the candidate set consists of the test 

items plus a randomly-selected set of 𝑁 decoy items, rather 

than the typical choice of considering all unseen items to be 

candidates (one-plus-random is an iterated version of ran-

dom decoys where the user’s test items are considered one 

at a time, each with a random set of decoys). The key idea 

is that there are probably not very many unknown-but-rele-

vant items, so a randomly-selected set of items will probably 

not result in misclassified decoys. 1000 is a common size 

for the decoy set (Cremonesi, Koren, and Turrin 2010; 

Koren 2008); the optimal size depends on the size of the data 

set and the estimated prevalence of unknown relevant items. 

 We started this work believing that the random decoy 

strategy is a promising technique for mitigating misclassi-

fied decoys, and our goal was to gain insight into how to 

select a good decoy set size. We found instead that the dis-

tribution of item goodness required to avoid misclassified 

decoys with reasonable probability is unreasonable, there is 

a serious discrepancy between the theoretical and observed 

behavior of the random decoy strategy with respect to the 

popularity bias problem, and saw no clear points to investi-

gate as potential decoy set sizes. Together, these findings 

cast doubt on the usefulness of the random decoy protocol. 

 In the remainder of this paper, we provide a theoretical 

treatment of the statistical infeasibility of the random decoy 

protocol as a remedy for the misclassified decoy problem, 

an experiment demonstrating it exacerbates popularity bias, 

and conclude with some thoughts on best practices for eval-

uation and future work. 

Related Work 

There is a long line of work investigating various means of 

evaluating recommender systems using publicly-available 

data (Breese, Heckerman, and Kadie 1998; Herlocker et al. 

2004; Gunawardana and Shani 2009; Bellogin, Castells, and 

Cantador 2011; Cremonesi, Koren, and Turrin 2010), and an 

even longer history of such offline evaluations in infor-

mation retrieval (Goffman 1964; Cleverdon 1967; Voorhees 

2001). 

 Of particular relevance to our work, recommender system 

evaluation work has identified the popularity bias problem 

(Bellogin 2012) and attempted to mitigate misclassified de-

coys (Cremonesi, Koren, and Turrin 2010). Other lines of 

research have identified deficiencies in accuracy-only pic-

tures of recommender performance (McNee, Riedl, and 

Konstan 2006) and the connection – or lack thereof – be-

tween offline measures and user response in an online 

setting (Ekstrand et al. 2014; Rossetti, Stella, and Zanker 

2016). 

 The information retrieval community has worked on ad-

dressing these challenges in their own data; three particular 

approaches have had good impact: 

 Pooling (Buckley and Voorhees 2004), where multiple 

retrieval algorithms are used to identify candidate 

items for human judgement; the remaining items can 

be assumed irrelevant with higher confidence. 

 Rank effectiveness (the ‘TestItems’ strategy of Bel-

login et al. (2011)), where unknown items are ignored 



and the results are evaluated solely on their rank con-

sistency with available relative preference judgements. 

This requires ratings or relative preference. 

 Relevance inference (Aslam and Yilmaz 2007), where 

relevance of unknown items is algorithmically inferred 

based on similarity with known documents.  

 There is significant variance in the accuracy metrics re-

ported by different experimental platforms (Said and 

Bellogin 2014) and between different papers. Part of this is 

due to a lack of best practices in recommender evaluation 

(Konstan and Adomavicius 2013). Previous studies have 

found many top-N evaluation metrics to be mostly rank-con-

sistent (Herlocker et al. 2004; Bellogin, Castells, and 

Cantador 2011) – ordering algorithms consistently with re-

spect to accuracy – but they are not always so, and even 

when rank is consistent the differing values of accuracy met-

rics impact statistical significance tests and other valuable 

analyses. We believe that a lack of in-depth understanding 

of the implications of different variations in evaluation strat-

egy makes it difficult to resolve this situation. In this paper, 

we report on one of our attempts to illuminate these issues 

in the interest of promoting more rigorous, comparable, and 

interpretable recommender systems research. 

The Data 

For our analysis and experiments, we use the MovieLens 

data sets (Harper and Konstan 2015). These data sets contain 

5-star movie ratings provided by the users of the MovieLens 

movie recommendation service. Table 1 summarizes the 

data sets, and Figure 1 shows the distribution of rating 

counts per item. 

Set Ratings Users Items Density 

100K 100K 943 1682 6.30% 

1M 1M 6040 3706 4.47% 

10M 10M 69878 10677 1.34% 

20M 20M 138493 26744 0.54% 
Table 1: Data Sets 

 
Figure 1: Distribution of item rating counts. 

Random Decoys in Theory 

The underlying principle of random decoys can be derived 

from Sturgeon’s Law (Sturgeon 1958): ‘90% of everything 

is crud’. This has been further refined to the rough approxi-

mation that only 1% of anything is ‘really good’ (Miller 

1960). If most items are low-quality, and a further large pro-

portion of them are not of interest to a particular user, then 

we can assume that a randomly selected item is probably not 

interesting to the user. Some users will enjoy items that 

would generally fall into the ‘crud’ category – for example, 

B-movie aficionados – but that does not substantially 

change our analysis. We can focus on the a priori probabil-

ity 𝑔 = 𝑃(𝑖 ∈ 𝐺𝑢) of a user thinking an item is ‘good’. For 

mathematical simplicity, we assume that goodness of each 

item is independent. 

Probability of Misclassified Decoys 

For a decoy set size 𝑁, we can reason about the probability 

that the set contains at least one good item: 𝑃(𝐿𝑁 ∩ 𝐺𝑢 ≠
∅) = 𝑃(∀𝑖 ∈ 𝐿𝑁 . 𝑖 ∉ 𝐺𝑢) = 𝑃(𝑖 ∉ 𝐺𝑢)

𝑁 = (1 − 𝑔)𝑁. If we 

desire 95% certainty that our decoy set does not contain a 

good item, then we require 1 − 𝑔 = 0.95
1
𝑁⁄ ; for the com-

mon size of 1000, 𝑔 = 0.00001: we must expect that only 

1 in 10K items is relevant to a user’s desires. Given that us-

ers rate tens to hundreds of movies in a 25K-movie set, this 

seems far too low. A decoy set size of 100 requires that no 

more than 1 in 1000 items be relevant, which also seems 

unrealistically high. 

 We can consider other probabilities, such as the likeli-

hood of having more than 𝑚 or 𝑓% misclassified decoys. 

However, if the decoy set contains even one relevant item, 

then it is the recommender’s job to find that item, and con-

ceivably to prioritize it above all known items (depending 

on the recommender application). 

Popularity Bias and Random Decoys 

Popularity bias (Bellogin, Castells, and Cantador 2011) is 

caused by the fact that popular items are more likely than 

unpopular items to be rated, including in the test set, so pick-

ing the most popular items in the candidate set is a fairly 

reliable means of separating test items from decoys. But 

popular items may not be the best recommendations for the 

same reason that test items may not be the best: if the rec-

ommender’s goal is to help users discover new items, then 

recommending ones they already know is not helpful. 

Therefore, top-N evaluation protocols seem to overempha-

size the value of popularity as a recommendation signal. 

 The random decoy protocol makes this worse. Because 

popularity follows a heavily skewed distribution, as can be 

seen for the MovieLens data in Figure 1, most items are not 

popular. Therefore, while the full set of items contains a 

number of items of similar popularity to the test items that 

the recommender should distinguish the test items from, the 

random decoy set probably does not contain these items, 



making popularity an even better predictor of whether an 

item appears in the user’s test ratings. While the exact prob-

abilities will depend on user behavior and the relationship 

between relevance and popularity, we do not expect random 

decoys to improve popularity’s excessive advantage. 

 Evaluations of recommenders that take into account the 

desire to explore the long tail of worthwhile but less-popular 

items often augment accuracy with additional novelty 

measures. However, the difficult-to-untangle link of popu-

larity with available assessments of ‘goodness’ makes these 

evaluations difficult to start with, and deepening that entan-

glement through our evaluation strategy will not help.  

Random Decoys in Practice 

Having examined the theoretical dynamics of the random 

decoy protocol, we now turn to our experiment on the im-

pact of decoy set size on recommender evaluation results. 

Experimental Method 

To empirically examine the effect of decoy set size on rec-

ommender evaluation, we tested several recommender 

algorithms with different selections of decoy set sizes. We 

used a pre-release version of LensKit version 3.0 (Ekstrand 

et al. 2011) and the MovieLens data sets (Harper and Kon-

stan 2015) for our experiment. 

 We tested the following algorithms: 

 Popular recommends the most often-rated movies. 

 PersMean recommends items with the highest average 

rating. 

 Item-Item is an item-based collaborative filter (Sarwar 

et al. 2001) configured to use 20 neighbors, cosine sim-

ilarity, and item-mean normalization. 

 FunkSVD is a gradient descent matrix factorization 

technique (Funk 2006; Paterek 2007) with 40 latent fea-

tures and 125 training iterations per feature. 

 For each data set, we generated 5 disjoint sets of test us-

ers; for 100K and 1M, these sets encompassed all users, 

while for 10M and 20M they each contained 5000 users. For 

each test user, we randomly selected 5 ratings as test ratings; 

the user’s remaining ratings, along with all ratings from us-

ers not in their test set, formed the training data. 

 We then produced 10-, 25-, and 100-item recommenda-

tion lists, varying the number of decoy items selected, and 

measured precision, recall, MRR, MAP, and nDCG. For 

precision metrics, we considered an item ‘relevant’ if the 

user rated it. We report results primarily on nDCG; other 

metrics yield similar patterns (see Figure 6 for MRR). 

 Full source code to reproduce the experiment and analysis 

is available in the Supplemental Files accompanying this pa-

per, and online at: 

https://works.bepress.com/michael-ekstrand/19/ 

Results 

Figures 2 and 3 show the performance of the algorithms we 

tested on nDCG with 10-item recommendation lists; Figure 

2 shows raw nDCG performance, and Figure 3 shows nDCG 

normalized to the fraction of Popular’s performance each al-

gorithm achieves. Figures 4 and 5 show the same for 100-

item lists. In all of these charts, the horizontal lines are the 

performance with a full decoy set (the candidates set con-

sists of all unrated items). 

 We observe a few things in these plots: 

 For short lists, the absolute difference in algorithm per-

formance increases – with Popular gaining an 

advantage – for a moderate range of decoy set sizes in-

cluding 1000. It is low for very small decoy sets – where 

there are not many non-decoys to choose from – and for 

large decoy sets, approaching the traditional evaluation 

protocol without random decoys. 

 The proportional difference in performance – fraction 

of Popular’s performance achieved by a rating-based 

recommender – increases fairly consistently as the de-

coy set size decreases. 

 
Figure 2: nDCG on 10-item lists 

 
Figure 3: nDCG on 10-item lists (fraction of Popular score) 

 



 The discrepancy between absolute and proportional 

performance differences introduces further room for in-

consistency in experimental protocols and analysis. 

Also, many papers report ‘% improvement’ in their er-

ror metrics, but statistical tests typically rely on 

absolute differences unless error values are normalized. 

 Inflection points do not seem to be connected to the 

fraction of the items in the decoy set. 

These results are not consistent with the theoretically-ex-

pected effect that randomly subsetting decoys would 

increase popularity bias. The change in absolute difference 

of metric values also implies that statistical significance can 

easily depend on the choice of decoy set size, a clearly un-

desirable situation. 

We also note, though, that random decoys do not change 

the performance ordering of any algorithms on the data sets 

and metrics we have run. While a more careful comparison 

would need to account for tuning parameters with varying 

decoy strategies, if random decoys do not affect the deci-

sions made as a result of a recommender evaluation 

experiment, then they do not seem to provide much value. 

 
Figure 6: Mean Reciprocal Rank for 10-item lists. 

Conclusion 

While randomly-selected decoys, on their face, seem like a 

promising method for dealing with the relevant decoy prob-

lem, our experiments failed to identify a means of selecting 

an appropriate number of decoy items, and further provided 

evidence that the random decoy strategy interacts in com-

plex ways with popularity bias; in theory, it should 

exacerbate popularity bias, but empirical data find that ran-

domly restricting the decoy set decreases the relative 

performance advantage of Popular over collaborative filter-

ing algorithms. We also noted a dependency of the absolute 

different in performance on the decoy set size, with adverse 

implications for statistical significance testing. 

 Since there is no known means for determining an effec-

tive number of decoys (the choice of which Koren also 

acknowledges as arbitrary (Koren 2008)), and there is a 

complex relationship with other known recommender eval-

uation problems that still needs to be fully characterized, we 

suggest that the random decoy strategy is not, at present, an 

effective means of evaluating recommender quality. 

Rather, randomly selecting decoys introduces additional 

variance into evaluation that harms reproducibility and com-

parability of research results, for a benefit that cannot 

currently be quantified and may not be achieved. 

It is still unknown just how pervasive the popularity bias 

and misclassified decoy problems are and the full impact 

they have on recommender evaluation outcomes. We hope 

in future work to quantify the extent and impact of these 

problems and perhaps to devise better strategies for mitigat-

ing them, as well as to explore our empirical results on 

additional data sets. 

Until then, given the existence and unknown nature of the 

problems we discuss, the most reliable means of assessing 

top-N recommendation quality when ratings or other rela-

tive preference data is available seems to be a rank 

effectiveness strategy, called ‘TestItems’ by Bellogin, Cas-

tells, and Cantador (2011): limit the candidate set to the test 

items and assess the recommender on its ability to order 

these consistent with the user’s expressed preferences. This 

 
Figure 4: nDCG over 100-item lists 

 
Figure 5: nDCG over 100-item lists (fraction of Popular score) 

 



approach tests the algorithm’s ability to rank while avoiding 

many of the sparsity pitfalls causing top-N evaluation to be 

unreliable, but is little comfort to those working with im-

plicit feedback data such as clicks and purchases. It also 

does not test the recommender’s ability to identify interest-

ing items from a large pool, but the misclassified decoy 

problem casts doubt on the ability of any offline top-N eval-

uation to measure this in a way that is consistent with the 

user experience desired for most recommender applications.  
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