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ABSTRACT 
Information access systems, such as search and recommender sys-
tems, often use ranked lists to present results believed to be relevant 
to the user’s information need. Evaluating these lists for their fair-
ness along with other traditional metrics provides a more complete 
understanding of an information access system’s behavior beyond 
accuracy or utility constructs. To measure the (un)fairness of rank-
ings, particularly with respect to the protected group(s) of producers 
or providers, several metrics have been proposed in the last several 
years. However, an empirical and comparative analyses of these 
metrics showing the applicability to specifc scenario or real data, 
conceptual similarities, and diferences is still lacking. 

We aim to bridge the gap between theoretical and practical ap-
plication of these metrics. In this paper we describe several fair 
ranking metrics from the existing literature in a common notation, 
enabling direct comparison of their approaches and assumptions, 
and empirically compare them on the same experimental setup and 
data sets in the context of three information access tasks. We also 
provide a sensitivity analysis to assess the impact of the design 
choices and parameter settings that go in to these metrics and point 
to additional work needed to improve fairness measurement. 

CCS CONCEPTS 
• Information systems → Evaluation of retrieval results; • 
Social and professional topics → User characteristics. 
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1 INTRODUCTION 
Information access systems (IAS), such as search and recommender 
systems, often present items in response to user information needs 
in the form of top-� ranked lists based on relevance score and other 
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measures of items’ quality and relationships (e.g. similarity, as in 
maximal marginal relevance [9]). 

Through these ranked lists, the system exposes its items (and their 
creators) to users, and this exposure afects what users discover, 
consume, and purchase. Further, this exposure is not always evenly 
or fairly distributed; diferent items or groups of items may receive 
disparate exposure when exposure is not equitably distributed to 
(relevant) items [11]. Disparate exposure can disadvantage content 
creators on either an individual or group basis. Popularity bias 
[1], for example, provides an advantage to creators based on their 
prior popularity. The system may also, however, provide greater 
or lesser exposure refecting in ways that reproduce historical and 
ongoing social discrimination, such as by disadvantaging creators 
of a particular gender or race. 

In the last few years, several metrics have been proposed to 
measure the fairness of rankings, some directly in search or recom-
mendation contexts and others for more general ranking purposes 
such as college rankings or university admissions. 

Kuhlman et al. [22] compare selected fair ranking metrics for 
measuring the statistical parity of rankings (whether they provide 
equal exposure to diferent groups), and Zehlike et al. [38] provides a 
thorough conceptual survey of fair ranking constructs, but there has 
not yet been a systematic comparison of group fairness metrics for 
ranked IAS outputs (where the system provides diferent rankings 
in response to diferent information needs — both prior comparisons 
focus on rankings for a single need), or direct comparisons within 
the same data set and experiment. 

Moreover, several of the metrics have been tested primarily on 
small and/or synthetic data sets that are not refective of real-world 
information access applications and experiments. Realistic exper-
imental settings present challenges for applying many metrics, 
including incomplete data (for both relevance and group member-
ship) and the occurrence of edge cases such as a group with no 
retrieved (or relevant) items. Metrics need to be robust and usable 
in such situations in order to be practically useful in experiments 
and for auditing deployed applications. Metric results may also be 
heavily infuenced by parameter choices and experimental designs. 
This is an important factor to consider when choosing framework-
applicable metrics because metrics which are signifcantly sensitive 
towards external factors or design choices are more complex to 
apply, as those decisions must be calibrated appropriately. There-
fore, despite the progress in metrics for measuring fairness, both 
practitioners and researchers may have difculty fnding the most 
applicable metric for their problem setting and its requirements. 

In this work, we seek to fll this gap: to provide a comparative 
analysis of fairness metrics in the context of information access, 
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to better inform the community of their relative strengths and 
weaknesses, and facilitate both better application of existing metrics 
and further research to advance the state of the art in measuring 
ranking fairness. Our goal is not to identify universally best metrics; 
the essentially contested nature of fairness [29] implies such a 
quest is futile. Rather, we want to connect fair ranking metrics with 
applications by providing insight into how to measure the provider-
side group fairness of the ranked outputs in actual search and 
recommender systems experiments using these metrics. Further, 
there is not a fxed ground truth to use to assess external support 
for a metric — there are many potential fairness objectives with 
varying degrees of compelling arguments. We therefore seek to 
inform the discussion through internal support: documenting and 
comparing the structure of the metrics, and their varying behaviors 
over real data, to assess and suggest what strengths and weaknesses 
we can for each metric. 

Our aim is to do for provider-side group fairness what Friedler 
et al. [16] did for fair classifcation metrics; this complements the 
thorough conceptual survey of fair ranking constructs and interven-
tions in a general ranking setting by Zehlike et al. [38] and Kuhlman 
et al. [22]. We provide a concise treatment of fair ranking metrics 
specifcally focused on measuring fairness in information access 
settings, and implement these metrics in a common experimental 
setting to show their results on the same data, systems, and tasks. 
This enables us to investigate the following: 

• What is needed to apply these metrics to real IAS outputs, 
which often have missing data (including relevance judg-
ments and group annotations), may have highly imbalanced 
outputs or relevant sets, or exhibit other edge-case behavior? 

• What are the actual substantive diferences between these 
metrics, once superfcial diferences in framing and notation 
are resolved? 

• What are the design decisions and parameters involved, and 
how sensitive are the resulting metrics to those decisions? 

• What are the empirical diferences in how these metrics 
assess the relative fairness of diferent recommendation al-
gorithms or retrieval runs? 

In this paper, we make four contributions: 

• We describe rank fairness metrics in a unifed notation for 
information access, identifying similarities and diferences. 

• We identify gaps between the conceptual form and the prac-
ticalities of applying the metrics to both search and recom-
mender system evaluation experiments. 

• We directly compare the outcomes of these metrics with the 
same data and experimental settings1. 

• We conduct sensitivity analysis to assess the impact of design 
choices and external factors on these metrics. 

From our results we highlight strengths and limitations of the 
metrics, fnding that some of them are particularly sensitive to 
edge cases and/or parameter settings. We conclude with recommen-
dations for choosing metrics from the current state of the art for 
diferent experimental settings, and pointers to further research that 
is needed to fll out our understanding of fair ranking measurement. 

1https://github.com/BoiseState/rank-fairness-metrics 

2 BACKGROUND 
In this section we introduce several defnitions and a brief summary 
of previous research concerning the fairness issue in IAS. 

2.1 Algorithmic Fairness 
Data-driven algorithmic systems, be they IAS or machine learning 
classifcation models, often refect existing social biases in the data 
and context in which they are trained and evaluated into biases 
in their outcomes and efects [2]. Bias can appear throughout the 
design of such systems due to faulty data, fawed algorithms, biased 
evaluations, and other issues. In order to correct decision making 
refections of systemic societal biases, it is essential to identify 
and measure bias. Fairness is hard to quantify; as an essentially 
contested social construct [29], there is not a single correct or 
objective defnition of fairness. 

Mitchell et al. [24] provide a survey of fairness defnitions for 
classifcation models. One dimension along which fairness defni-
tions divide is individual and group fairness. Individual fairness 
addresses the goal that similar individuals should (statistically) re-
ceive similar decisions, but crucially depends on a robust construct 
of similarity with respect to the task for which decisions are made, 
and there is currently no consensus in assignment of task-relevant 
similarity among individuals [6]. 

Group fairness, the focus on this work, aims to provide similar 
outcomes for members of diferent groups; this is often framed as 
ensuring a protected group is not treated unfairly with respect to a 
dominant group. Group membership is often defned by sensitive 
attributes such as race, gender, or ethnicity. 

Two concepts that are particularly relevant to our work are dis-
parate treatment and disparate impact; they are commonly used 
notions of unfairness to map with the concepts of direct and in-
direct discrimination. Disparate treatment occurs when diferent 
groups are intentionally treated diferently, through either explicit 
use of sensitive attributes or other attributes designed to produce a 
discriminatory efect; disparate impact occurs when the system’s 
efects are diferent for diferent groups regardless of intent [2]. 
Statistical parity — ensuring diferent groups receive favorable out-
comes at comparable rates — is a common way of measuring dis-
parate impact. Zafar et al. [36] introduced disparate mistreatment 
or equalized odds which defnes the diference in error rates based 
on group association; a closely-related concept that informs some 
fair ranking designs is equality of opportunity [18], where qualifed 
subjects should receive an equal probability of favorable outcome 
regardless of group membership. 

2.2 Fairness in Information Access Systems 
IAS introduce a further complication of being multi-sided envi-
ronments, with diferent stakeholders having diferent fairness 
concerns [8]. Burke [7] distinguished between provider fairness 
and consumer fairness considering multiple stakeholders in recom-
mender system frameworks. Provider fairness considers whether 
those who create the content a system recommends or retrieves 
are treated unfairly, on either a group or individual basis, while 
consumer fairness examines whether users experience the system 
unfairly. When studying provider fairness, the problem is further 
complicated by ranked outputs, particularly due to position bias: 
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users are more likely to see and engage with recommendations at 
the top of a list [35]. Slight changes to ranking may lead to large 
changes in the attention paid to a result and the economic return 
to its creator. Further, in any single ranking only one item may be 
placed at the top of the list, and will be the only item to accrue 
the benefts of frst position regardless of the merit of the second 
item. Several metrics have been proposed to measure unfairness 
in ranking, variously taking into account user attention, exposure, 
and relevance of items. We survey these in more detail in Section 3, 
and refer the reader to the survey by Ekstrand et al. [13] for more 
exposition on fair information access in general. Beutel et al. [3] and 
Narasimhan et al. [25] take a diferent approach by defning fairness 
objectives over pairwise orderings instead of entire rankings, which 
is outside of the scope of this work. 

In this paper, we focus on provider-side group-fairness of ranked 
outputs, adopting the common frame inspired by the United States 
anti-discrimination law of a “protected group”: a class of people 
who share a trait upon which a recommendation or classifcation 
should not be discriminatory [33]. This includes discrimination on 
the basis of race, gender, religion, and similar traits. Some metrics 
are applicable to individual fairness; we note in their discussion. 

3 FAIR RANKING METRICS 
We begin by describing several fair ranking metrics, summarized in 
table 1, in a common framework and notation. This enables direct 
comparison of their designs and theoretical behavior, and facilitates 
easier implementation in IR experiments. In some cases, we assign 
new name for metrics based on their functionality, purpose, and 
comparability within our synthesis. 

3.1 Problem Formulation 
We consider an IR system that retrieves a ranked list � of � docu-
ments �1, �2, . . . , �� ∈ � in response to requests (e.g. queries in a 
search system or users and/or contexts in a recommender system) 
�1, �2, . . . , �� ∈ � (notation summarized in table 2). Documents 
may have an associated request-specifc relevance score �(� |�), and 
the system may estimate this by a predictor �̂(� |�). 

Providers are associated with one (or more) of � groups. We 
represent this by giving each document an alignment vector G(�) ∈ 
[0, 1]� (s.t. ∥G(�)∥1= 1) indicating its group association; generaliz-
ing from a categorical variable to a vector allows soft association 
(mixed or partial membership) or uncertainty about membership 
[27]. We generalize G(�) to a list function, with G(�) denoting an 
� × � alignment matrix whose rows correspond to the documents 
in � and columns are groups. In the case of defnitively-known 
membership in a binomial pair of groups, G+(�) denotes the set of 
documents in � in the “protected” group and G−(�) the remaining 
documents (dominant group). 

Our goal is to measure exposure (sometimes called attention) 
each document, content provider, or group receives, and assess the 
fairness of this distribution to ensure demographic or statistical 
parity (ensures comparable outcomes across groups) or equality of 
opportunity (ensures equal treatment based on merit or utility irre-
spective of the group membership). Accounting for the decreasing 
attention users are likely to pay to documents at deeper rank posi-
tions (position bias) requires a browsing model; some metrics build 

this implicitly into their structure, while others explicitly model it 
as a position weight vector a� for �. Table 3 describes the various 
weighting schemes used by the metrics we survey. The resulting 
exposure is then sometimes compared with a target distribution p̂ 
that represents across groups. There are several ways of computing 
p̂, including strict group equality, an estimate of the population of 
actual or potential content providers, or the distribution among 
providers of relevant documents. 

3.2 Statistical Parity in Single Rankings 
We begin with metrics that assess the fairness of a single ranking 
and only measure exposure equity without considering relevance 
(that is, they target statistical parity). These metrics can be aggre-
gated over the rankings produced by a system, e.g. by taking the 
mean, to produce an overall system fairness score. 

The simplest way to measure the fairness of a single ranking is 
to measure the proportion of items in each group [14], but this does 
not account for position bias. Yang and Stoyanovich [34] propose 
a family of statistical parity measures that incorporate position 
bias by averaging parity over successive prefxes of the ranking; 
we call this the prefx fairness family (PreF∆). These metrics are 
optimized when the representation in each prefx matches the target 
p̂ as closely as possible, as measured by a distance function ∆; 
Yang and Stoyanovich used the full ranking’s composition as p̂, 
and instantiate PreF∆ with distance functions ∆ND, ∆RD, and ∆KD 
(from Table 4) to yield diferent members of the family. The metric 
is defned as 

� 1 ∑ ∆(�≤� , �̂)
PreF∆(�) = (1)

� log2 � �=10,20,30,... 

where normalizing scalar � = max� ′ PreF∆ 
′ (� ′ , �̂) (taken over all � ′ 

with the same length and group composition as �, where PreF∆ 
′ is 

the prefx fairness function without the normalizer), scaling PreF∆ 
to the range [0, 1] where 1 is maximum unfairness. ∆KL has the 
advantage of allowing multinomial protected attributes and soft 
group association. PreF∆ does not work when G−(�) = ∅, and 
∆RD does not work when G−(�) is small. � is also troublesome to 
compute with incomplete group membership data. 

Zehlike et al. [37] propose a similarly-motivated group fair-
ness constraint for a single list and fxed membership in bino-
mial groups: � satisfes the FAIR constraint if for every prefx �≤� 
with 1 ≤ � ≤ � , the protected group is not statistically signif-
cantly under-represented. Unlike PreF∆, FAIR does not penalize 
over-representing the protected group. We convert this constraint 
into a metric by taking the average of the binomial probabilities: 

� 1 ∑ � �
ˆFAIR(�) = � ≤ |G+(�≤� )| �, � (2)�Binomial

� 
�=1 
� |G+(�≤� ) | � �

1 ∑ ∑ � 
(�̂)� (1 − �̂)�−� = 

� � 
�=1 � =1 

Sapiezynski et al. [27] provide a more general metric for single-
list fairness by using an explicit (and confgurable) position weight 
model instead of embedding the browsing model in the metric 
structure. Given an alignment matrix G(�) and suitably normalized 
position weight vector a� , �� = G(�)Ta� is a distribution that 
represents the cumulative exposure of the various groups in �. 



Table 1: Summary of fair ranking metrics. 

Metric(s) Goal Weighting Target Binomial? Range More Fair 

PreF∆ [34] Each prefx representative of whole ranking — �̂ from full ranking Dep. on ∆a [0, 1] 0 
AWRF∆ [27] Weighted representation matches population Geometric confgured �̂ Dep. on ∆ [0, 1] 0 
FAIR [37] Each prefx matches target distribution — binomial �̂ Yes [0, 1] 0 

logDP [30] Exposure equal across groups Logarithmic equality Yes (−∞, ∞) 0 
logEUR [30] Exposure proportional to relevance Logarithmic ∝ utility Yes (−∞, ∞) 0 
logRUR [30] Discounted gain proportional to relevance Logarithmic ∝ disc. utility Yes (−∞, ∞) 0 
IAA [5] Exposure proportional to predicted relevance Geometric ∝ est. utility No [0, ∞) 0 
EEL, EER [11] Exposure matches ideal (from relevance) Cascade, RBP. � (utility) No [0, ∞) EEL 0, EER > 
EED [11] Exposure well-distributed Cascadeb, RBP. equality No [0, ∞) 0 

a∆RD and ∆RD both require binomial protected group attributes, but ∆KL generalizes. 
b Cascade weighting also incorporates relevance into exposure, even if exposure is not compared to relevance. 

Table 2: Summary of notation. 

� ∈ � document or item 
� ∈ � request (query or user) 
� ranked list of � documents from � 

�−1(�) the document in position � of list � 
�(�) rank of document � in � 
�≤� prefx of � of length � 
�(� |�) relevance of � to � 
� number of groups 

G(�) group alignment vector 
G(�) group alignment matrix for documents in � 
G+(�) set of documents in protected group in � 
G−(�) set of documents non-protected group in � 
p̂ target group distribution 
a� attention vector for documents in � 

a� (�) position weight of � in � 
�� the exposure of groups in � (G(�)� a�) 

The resulting unfairness metric, which we call Attention-Weighted 
Rank Fairness (AWRF∆), is the diference between this exposure 
distribution and the population estimator: 

AWRF∆(�) = ∆(��, p̂) (3) 

AWRF∆ allows soft association and multinomial protected attributes. 
The distance function in Table 4 depends on application context; 
for assessing a particular protected class representation, diference 
in probability is suitable distance. 

3.3 Statistical Parity in Multiple Rankings 
In many cases, fair exposure cannot be achieved in a single rank-
ing, because the attention paid to rank positions often decreases 
more steeply than the utility (relevance) of documents [5, 11]. One 
solution is to measure fairness over sequences or distributions of 
rankings so providers have comparable opportunity to be exposed 
in at least some sessions or responses. This approach can be mod-
eled as a request-dependent distribution (or policy) � (� |�) over 
rankings [11, 30]. We extend this to include a distribution over re-
quests �(�), so a sequence of rankings �1, �2, . . . , ��̃ [5] is a series of 
draws from the distribution �(�)� (� |�). The group exposure within 

a single ranking from Eq. 3, �� = G(�)� a� , is the fundamental 
building block of these metrics, along with its expected value: ∑ 

�(�) = E� [��] = � (� | �)�� 
�∑ 

�� = E�� [��] = �(�)�(�) 
� 

Singh and Joachims [30] and Diaz et al. [11] each propose metrics 
for measuring statistical parity over ranking policies. Neither metric 
incorporates a target distribution; they are optimal when all groups 
are equally exposed. Demographic parity [DP, 30] measures the 
diference in exposure between two groups:2 

DP = �� (G+)/�� (G−) (4) 

Expected exposure disparity [EED, 11] ensures well-distributed 
exposure by measuring the inequality in exposure distribution 
across groups with the �2 norm: 

EED = ∥�� ∥2
2 (5) 

3.4 Equal Opportunity in Multiple Rankings 
So far, none of the metrics we have discussed account for the utility 
of the ranked results — rankings do well by exposing providers 
regardless of the utility of their items. The intuition behind incor-
porating utility, articulated independently by Singh and Joachims 
[30] and Biega et al. [5], is that exposure should be proportional to 
relevance: if an item or a group contributes 10% of the relevance to 
a request (user and/or query), it should receive approximately 10% 
of the exposure. This is a ranked analog of the equality of opportu-
nity construct from fair classifcation [18]: outcome is conditionally 
independent of group given utility. 

To measure deviation from this goal, Singh and Joachims [30] 
propose two metrics. The exposed utility ratio (EUR)3, measures 
deviation from the goal that each group’s exposure is proportional 

2The original paper presented a constraint, not a metric, for demographic parity; we 
have implemented it as a ratio to be consistent with the other metrics.
3Singh and Joachims [30] used the terms “disparate treatment ratio” and “disparate 
impact ratio” for EUR and RUR, respectively, but this terminology is not consistent with 
the use of these terms in the broader algorithmic fairness literature as we understand 
it. Exposure the system gives to providers is an impact, not a treatment. We have 
changed the names to hopefully reduce confusion going forward. 



Table 3: Weighting models for computing a�(�) with default parameter values. 

Metric Model Formula Parameters 

AWRF, IAA Geometric � (1 − � )�(� )−1 Stopping probability � 
logDP, logEUR, logRUR Logarithmic 1/log2 max{�(�), 2} — 

EER, EED, EEL RBP ��(� ) Continuation probability (patience) � � � � �
EEL, EED, EER Cascade ��(� )−1 Q 1 − � �(�−1(� ) |�) Patience � , stopping probability function � � ∈[0,�(� )) 

Table 4: Distance functions for comparing distributions. 

Distance Function p̂a Formula 
|G+(�) |∆ND(�, p̂) Binomial − p̂

� 
|G+(�) | p̂∆RD(�, p̂) Binomial −|G−(�) | 1−p̂ 

∆KL(�, p̂) Multinomial �KL(p̂(�)∥p̂)b 

∆AD(��, p̂) Binomial | |G
+(�) | − p̂ |
� 

aBinomial p̂ is a scalar probability of the protected group. 
bK-L divergence; p̂(�) is the probability distribution of groups in �. 

Pto its contributed utility (measured by Υ(G) = E� [ 1 
� ∈� �(� |�)]):� 

�� (G+)/Υ(G+)
EUR = (6)

�� (G−)/Υ(G−) 
The realized utility ratio (RUR) incorporates utility into both nu-
merators and denominators by measuring whether the discounted Putility contributed by each group (Γ(G) = � ∈G E�� [a� (�)�(� |�)]) 
is proportional to its total utility: 

Γ(G+)/Υ(G+)
RUR = (7)

Γ(G−)/Υ(G−) 
As they are based on ratios between group metrics, EUR and RUR 
do not support multinomial protected groups or soft association. 

Biega et al. [5] present the amortized attention construct to mea-
sure exposure over the sequence of rankings. This compares rank 
exposure with expected utility Υ̂ (computed with system-predicted 
utility �̂(� |�)) instead of ground truth relevance assessments �(� |�)), 
measuring whether the system allocates exposure proportional to 
the utility it estimates items to have. Deviations from this goal are 
measured by taking the �1 norm of the group exposure-utility dif-
ferences, yielding the Inequity of Amortized Attention (IAA) metric: 

IAA = ∥� − Υ̂ ∥1 (8) 

Diaz et al. [11] build on this to integrate relevance in a diferent 
way. Rather than relate exposure directly to relevance, they use 
relevance to derive target exposure based on an ideal policy � that 
assigns equal probability to all rankings that place items in non-
decreasing order of relevance and 0 (or miniscule) probability to 
all other rankings. The target exposure �∗ is the expected expo-
sure under the ideal policy (� ∗ = E�� [��]). They take the squared 
Euclidean distance between system expected exposure and target 
exposure, yielding the Expected Exposure Loss: 

EEL = ∥�� − � ∗∥2
2 (9) 
⊺= ∥�� ∥2

2−2�� � ∗ + ∥� ∗∥2 (10)2 

The decomposition in Eq. 10 yields expected exposure relevance 
EER = 2�� 

T�∗ (measuring the alignment of exposure and relevance, 
higher values represent better alignment) along with EED. Neither 

IAA nor the EE metrics distinguish between group over- or under-
exposure; for both, 0 is perfectly fair and larger values are unfair, 
with no preferential treatment given to a protected group. 

The common thread between these metrics, articulated by Diaz 
et al. [11], is that for a fxed information need, diferences in ex-
posure between items with the same relevance grade results in 
unjustifably unfair outcomes. Relating exposure to relevance sets 
the goal that items of comparable relevance should have comparable 
opportunity to be exposed, as measured by expected or amortized 
exposure over repeated rankings. 

3.5 Assessing Metric Design 
Rendering metrics in a common notation shows that the metrics 
are quite similar in their basic concepts. The fundamental construct 
— weighted exposure — is the same across most metrics, and they 
difer primarily in how they relate exposure to relevance and how 
they aggregate and compare exposure distributions. The following 
questions help identify more precisely what their salient diferences 
are and how those may relate to particular IAS applications and 
experimental settings. 

Does the metric incorporate relevance? EEL, EER, EUR, RUR, 
and IAA directly incorporate relevance into metric; others strictly 
measure statistical parity. It is desired depending on the precise 
task and evaluation goal. Statistical parity metrics are useful for 
measuring relative fairness of rankings already optimized for utility, 
particularly when there is no relevance information available or 
the relevant sets for a query are large. They can also be used to 
detect discrepancies that may indicate unfairness in relevance data 
(if relevance data is unfair, for example by systematically under-
estimating the relevance of a group’s documents, a metric that 
relates exposure to relevance will use the unfair relevance to justify 
unfair disparities in exposure). However, using such metrics in 
isolation for evaluation or optimization may reduce ranking quality. 

How does it handle missing data? Real-world data sets are 
often incomplete, missing relevance and/or group labels for many 
documents. Metrics that are less sensitive to that problem will be 
easier to apply in such cases. Missing relevance data afects EUR, 
RUR, EER, and EEL like it does classical IR evaluation metrics such 
as nDCG; the straightforward but biased approach is to treat items 
with unknown relevance as irrelevant (� = 0). IAA’s use of system-
estimated relevance allows it to sidestep this problem. 

Missing group labels require diferent handling. For many met-
rics we can include unlabeled items when computing attention 
weights but exclude them from further analysis, or treat “unknown” 
as an additional group identity. Unknown data is a more signifcant 
problem for PreF∆ family because it treats a list with fewer than 10 
known-group items as maximally fair, and the straightforward way 



of computing � — make the ranking maximally unfair by putting 
all protected items last — does not work in the face of missing data. 

How does it respond to edge cases? Realistic IR experiments 
bring a number of important edge cases, such as groups with no 
items relevant to or retrieved for a request. Ratio-based metrics and 
distance functions are particularly vulnerable to these problems; the 
EUR metric and the ∆RD distance function, for example, approach 
infnity as the number of non-protected-group items retrieved goes 
to zero. RUR is even more brittle, as it requires nonzero relevance 
from retrieved non-protected-group items to avoid infnity, and 
both it and EUR can be infnite or undefned if the set of relevant 
items from either group is zero. 

Reformulation of DP, EUR and RUR: Since these three metrics 
are ratios, their maximally fair point is 1, with a nonlinear rela-
tionship between values favoring and disfavoring the protected 
group, hindering interpretability; further, they approach ∞ if the 
dominant group exposure is close to 0. To improve interpretability, 
we take the logs of these ratios, so 0 is fair and distance is symmetric 
in either direction; and we address the empty-group problem by 
adding a small damping constant to both sides of the ratio. This 
yields the following reformulation for DP: � � � � 

logDP = log �(�+) + 10−6 − log �(�−) + 10−6 

logEUR and logRUR are defned equivalently. As log ratios, values 
greater than 0 indicate a bias in favor of the protected group. 

What is the target? PreF∆, FAIR, AWRF∆, EEL, and EER pro-
vide fexibility in determining how the (un)fairness of exposure 
is ultimately assessed through selection of the target distribution, 
while targets are implicitly baked in to the structure of others. This 
confgurability is useful because it allows the metric to be adapted 
to the fairness requirements of a particular task, although it can 
impair comparability between experiments. 

How does the metric compare the system with the target? 
Some metrics (AWRF∆ and PreF∆) use an explicit distance func-
tion to compare distributions, while others use ratios of specifc 
proportions or norms of diferences in distributions. Norms and 
selected distance functions (such as ∆KL) can accommodate soft 
association, while ratios and distance functions based on binomial 
probabilities require defnitive membership in binomial groups. 
They can be adapted to some multi-group situations if only one 
group’s exposure needs to be considered. 

What user model does it use? Most metrics allow diferent 
position weighting strategies to be selected, both in its structure 
and its parameters. This confgurability allows the metric to be 
adapted to specifc application but introduces potential sensitivity 
to choices of weight functions and parameter values. PreF∆ and 
FAIR are not confgurable, as position weighting is built-in. 

4 EXPERIMENTAL SETUP 
We now turn from our analytical treatment of the metrics to an 
empirical comparison, using each of them (except for PreF∆, due 
to its difculties with missing labels and soft membership) in real 
world IAS experiments for three tasks across two problem settings: 

(1) Personalized book recommendations, measuring fairness 
with regards to author gender. 

Table 5: Summary of experiment data. 

Fair TREC 2020 
GoodReads Rerank Retrieval 

Systems 4 23 5 
Requests 5000 195 189 
Items 23,60,655 2112 2112 
|G+ | 1,90,711 294 294 
|G−| 21,17,451 1632 1632 

(2) Scholarly article retrieval (both retrieval and re-ranking of 
short candidate sets) based on queries, measuring fairness 
with regard to the economic development of the author’s 
country (as a proxy for the research resources available). 

We further carry out a sensitivity analysis to understand how ex-
perimental outcomes change in response to design decisions and 
parameter values in the metrics. 

This section describes the experimental setup itself, and the 
considerations we had to make when adapting the metrics in this 
setting. Table 5 shows summary statistics for each dataset. 

4.1 Recommendation (GoodReads) 
For our recommendation experiments, we used the GoodReads data 
[32] in an experiment adapted from that of Ekstrand and Kluver [14], 
using Version 2.0 of the PIReT Book Data Tools4 to prepare data 
sources. We use LensKit for Python [12] to train recommendation 
models on implicit feedback data from GoodReads, with a positive 
user-book interaction if the user ever added the book to a shelf. We 
sampled 5000 users for our experiment, each of which had at least 
10 book interactions, holding out 5 interactions per user as test 
data for assessing relevance in the resulting recommendations. We 
used four collaborative fltering (CF) algorithms: user-based CF (UU 
[19]), item based CF (II [10]), matrix factorization (WRLS [31]), and 
Bayesian Personalized Ranking (BPR [26]), using confgurations 
and hyperparameter tunings from Ekstrand and Kluver [14], to 
generate a single list of 100 recommendations for each user. 

We measured the fairness of each recommendation list with re-
spect to the gender of the book’s author, extracted from Virtual 
Internet Authority File (VIAF)5 (as described by Ekstrand and Klu-
ver [14]). Group membership in this data is binary but incomplete, 
so we considered female authors to be the protected group �+ and 
male authors �− for all two-group metrics (unknown-author books 
are therefore ignored). For AWRF∆, we used ∆AD (following the 
original presentation [27]), and the distribution of male and female 
authors among the set of books in the data set as the population 
estimator. For IAA and the EE metrics, we treat unknown gender 
as a third author group. 

4.2 Search (FairTREC) 
For search experiments, we used submitted runs and evaluations 
from the TREC Fair Ranking Track 2020 [4]. These runs covered two 
tasks (re-ranking and full retrieval). We considered each submitted 

4https://bookdata.piret.info 
5http://viaf.org/viaf/data/ 

https://bookdata.piret.info


run as an individual system and used the given sequences of rank-
ings for each system. For the re-ranking task, we only used one run 
from each participating team. The details about the systems can be 
found in participants’ notebook papers [15, 21, 23, 28] 

Unlike GoodReads, in the FairTREC data, each document has 
a soft association with the economic development level of its au-
thor(s), and thus we could not implement logDP, logEUR, and lo-
gRUR. Additionally, IAA uses system predicted relevance as ground 
truth, which makes it inapplicable in TREC setup (because systems 
do not provide scores for all items) 

Table 6: Default confguration for metrics 

Metrics Weighting Stop %prob. Patience 
AWRF∆ Geometric 0.5 __ 

logDP, logEUR, logRUR Logarithmic __ __ 
IAA Geometric __ 0.5 

EEL, EER, EED RBP __ 0.5 
EEL, EER, EED Cascade 0.5 0.5 

5 EMPIRICAL RESULTS 
We now present the results of our experiment, using both the met-
rics in their default confgurations and conducting a sensitivity 
analysis with respect to weighting methods and parameters. 

5.1 Direct Comparison 
We begin by directly comparing the metrics with default parameter 
settings from their original papers to see how they assess each 
system in our experiments. Table 3 shows the default confguration 
of the metrics. This comparison allows us to get a frst view of the 
diferences in results using each metric as originally presented, with 
minimal adjustments for practical implementation (see Section 3). 

Figure 1 shows the metric results from our experiments. From 
this we observe two things: 

• Metrics frequently disagree on system orderings. 
• Metrics that agree in one experiment don’t necessarily agree 
on others. The most consistently-agreeing pair is FAIR and 
AWRF∆, the two single-list metrics we study. 

5.2 Sensitivity Analysis 
Section 3 demonstrates that the fair ranking metrics often incor-
porate several design choices. However, this does not tell us how 
much diference these choices make in practice; if a metric is highly 
sensitivity towards design choices, it is more difcult to make cor-
rect confguration decisions (particularly in the absence of external 
guidance for those choices), increasing the complexity of applying 
it and the likelihood of error. To further analyze the applicability 
and sensitivity of these metrics, we need to know to what extent 
these metrics are dependant on their decision choices. We now turn 
to understanding the impact of design decisions and parameter 
settings within each metric. 

As we noted in Section 3, the exposure-based metrics and AWRF∆ 
combine position weights and relevance in various ways; each was 
presented with particular position weighting strategy, but could 
be applied to any other. Further, most weighting strategies have 
parameters that afect the strength of the discounting. We test 

Figure 1: Fairness metrics GoodReads and FairTREC datasets 
using their original confgurations. Arrow indicates direction 
of maximal fairness; · means 0 is fair. System identities are 
not relevant to our results. 

(a) GoodReads recommendation task 

(b) FairTREC reranking task 

(c) FairTREC full retrieval task 

the sensitivity of metrics and conclusions drawn from them to 
the choice of ranked-list size, position weight formula, patience 
parameter, and stopping probability. 

5.2.1 Size of Ranked List. To observe the sensitivity towards ranked 
list size we apply the metrics lists of varying sizes (10–1000 for 
GoodReads recommendation, and 10–100 for FairTREC full re-
trieval). Fig. 2 shows the outcome of fairness metrics with the 
change of ranking length. We observe that: 

• Changing ranked list size had no efect on any metric applied 
to FairTREC. 

• AWRF∆, IAA, EEL, EED, and EER are mostly stable as the 
list length changes in the GoodReads recommendation ex-
periment; they show slight changes through length 50, but 
without afecting system ordering, and then stabilize. 

• logDP, logEUR and FAIR (on GoodReads) change notably, 
including reordering algorithms, as the list size changes. 

Sensitivity towards ranked-list size of ratio-based metrics and FAIR 
in recommendation task indicates to the need of studying metric 
dependency on relevance and group information availability. 

5.2.2 Weighting Strategy. For position-weighted metrics, we ap-
plied each metric to all four position weight models: rbp, cascade, 
geometric, and logarithmic (summarized in Table 3). Figure 3 shows 



Figure 2: Metric results with the change of ranked-list size. Figure 3: Metric results with the change of weighting strategy. 

(a) GoodReads recommendation task 

(a) GoodReads recommendations task 

(b) FairTREC full retrieval task 

the outcome of fairness metrics with the change of position weight-
ing strategy. We use a continuation probability of 0.5 for the pa-
tience parameter and a stopping probability of 0.5. From these 
results, we observe: 

• For GoodReads recommendation task, logDP, logEUR, and 
AWRF∆, systems show diferences with the change of weight-
ing strategy, whereas for IAA, EER and EED, algorithms 
remain stable and did not show much disagreement across 
diferent weighting strategies. logRUR and EEL show ex-
treme sensitivity towards the change of weighting model. 

• In FairTREC reranking (Fig. 4(b)), systems show small dif-
ferences but generally maintain system orderings across 
weighting models. We observe a few changes in order (e.g. 
AWRF∆ from cascade to logarithmic) but these are between 
systems already very close. 

• In FairTREC full retrieval (Fig. 4(c)), systems are generally 
stable across position models. 

From the analysis, we observe that browsing models can have 
efects over some metrics’ behavior to some extent, specially on 
EEL and logRUR. However, this analysis does not let us conclude 
that these metrics which showed stability over various weighting 
strategies will act uninfuenced with the change of parameters in 
weighting strategies. For further investigation, we measure the 
metrics by changing the parameter values. 

5.2.3 Patience Parameter. Figure 4 presents the response of the 
metrics across patience parameter changes for the rbp and cascade 
weightings where we can see the following patterns: 

• AWRF∆, EEL, EER, and EED show sensitivity towards the 
patience parameter following the same pattern in all three 
tasks (full retrieval, reranking, recommendations) 

• In EEL, EED, and EER, systems show mild separation with 
each other following the same pattern across weighting 
strategies. 

• On GoodReads recommendation tasks, logDP, logEUR, and 
IAA show substantial separation between systems; they also 

(b) FairTREC reranking task 

(c) FairTREC full retrieval task 



Figure 4: Metric results with the change of patience parameter and stopping probability. 

(a) Patience parameter on recommendation tasks (b) Stopping probability on recommendation tasks 

(c) Patience parameter on reranking task (d) Stopping probability reranking task 

(f) Stopping probability on full retrieval task (e) Patience parameter on full retrieval task 

preserve system order as the parameter changed but the 
diferences between systems shifted. The systems follow a 
similar pattern across weighting strategies. 

• logRUR is extremely sensitive to patience parameter changes. 

5.2.4 Stopping Probability. Figure 4 shows the outcome of fairness 
metrics on the generated recommendations for geometric and cas-
cade position weight models and the sensitivity towards the change 
of stopping probability. We have made the following observations 
from the charts: 

• In FairTREC full retrieval and reranking tasks, metric results 
change with stopping probability. However, the systems did 
not vary in the changing pattern signifcantly. 

• On the GoodReads recommendations task (fgure 5(b)), IAA, 
logDP and logEUR shows sensitivity with the change of 

stopping probability and the sensitivity is notable in the 
cascade weighting strategy. 

• In all three tasks, systems show complete inversion across 
weighting strategies for EEL, EED, and EER. In EEL, the 
pattern of sensitivity towards stopping parameter is diferent 
between recommendation and ad-hoc tasks. 

• logRUR is extremely sensitive to patience parameter changes. 

Almost all metrics show sensitivity towards parameter value 
changes, which imply the necessity of identifying optimal parame-
ter settings while implementing these metrics. 

Overall, we observe that metrics do vary in their responses with 
the change of design choices, however, IAA, EER, EED and AWRF∆ 
showed the most stability. 



6 DISCUSSION AND RECOMMENDATIONS 
We started this project with three goals: 

(1) Identify requirements to implement the fair ranking metrics 
in actual search and recommendation frameworks. 

(2) Identify similarities and both analytical and empirical difer-
ences among metrics to inform the metric selection process. 

(3) Identify the observable efects of diferent changes in the 
metric design or confguration. 

Our analysis provides signifcantly more in-depth knowledge 
about the fairness goals, requirements, implementations, and efect 
of design decisions. In summary, our key fndings are the following: 

• Many metrics are remarkably similar in their underlying 
concept of fairness. 

• Metric implementation highly relies on crucial factors such 
as group size, ranked list size, item relevance information, 
and group membership. 

• Certain design choices can make metrics vulnerable to edge 
cases. For example, ratio-based metrics have difculties with 
empty groups and zero values, such as a ranking that has no 
retrieved items from one of the groups. 

• Despite having similar fairness goals, these metrics can difer 
in their sensitivity towards external factors. 

This still leaves the question, however, of what we should do in 
the present to measure (un)fairness in ranking from real information 
retrieval system datasets using a fair ranking metric. We propose 
to use metrics compatible with the following criteria: 

• Allow multinomial protected attributes. Such metrics are 
applicable to a wider range of fairness settings, and choosing 
one means that the metric is not a reason to use a binary 
simplifcation of a multinomial attribute, such as gender. 

• Allow soft group association (mixed or partial membership). 
• Be stable with respect to design choices. 

This last point is to support ease of use; if a metric is highly 
sensitive to design choices such as the attention weighting model, 
then its validity depends more strongly on the correctness of those 
choices. While a metric’s validity with respect to the fairness objec-
tive in a particular application setting is the most important factor, 
given two comparably-appropriate metrics we would prefer one 
that is more robust to misspecifcation in its confguration. Based on 
these requirements, combined with our observations in sections 3 
and 5, we make recommendations for diferent measurement goals 
and context based on the current state of the art and knowledge 
about fair ranking metrics: 

Single Rankings. All single-ranking metrics we considered are 
statistical parity metrics — they do not incorporate relevance. From 
our analysis, AWRF∆ seems the most generally useful, because it 
supports multinomial protected attributes with soft assignment, 
and is adaptable to multiple attention models, target distributions, 
and diference functions. We are not yet able to make concrete 
recommendations for the choice of a diference function. 

Demographic Parity in Sequences. logDP and EED measure sta-
tistical parity on sequences of rankings. EED seems more generally 
useful because of its support for multinomial groups with soft mem-
bership, and was relatively robust with respect to design choices. 

Equal Opportunity in Sequences. The logEUR, logRUR, IAA, EER, 
and EEL metrics use relevance to measure (un)fairness in sequence 
of ranking, aiming at some version of equality of opportunity. We 
currently recommend using EER and EEL because of their support 
for multinomial groups with soft assignment, and comparative 
robustness. IAA shows comparable stability and can be adapted to 
multinomial groups and soft assignment; exploring that possibility 
is future work. In each context, position weighting model should 
be chosen based on user behavior in the expected context of use. 

7 CONCLUSION AND FUTURE DIRECTION 
This paper presents a comparative analysis among several fairness 
metrics recently introduced to measure fair ranking. We discuss 
the metric formulations and implications in an integrated notation 
and presented the frst (to our knowledge) empirical comparison 
of fair ranking metrics for recommendation and search systems in 
common data sets and fairness goals. We hope this comprehensive 
presentation and comparison among metrics will help future re-
searchers and practitioners to make more informed decisions about 
metric choice and confguration. 

Our fndings from this empirical analysis point to several direc-
tions for future research. Further work is needed on the limitations 
we observe from implementing the metrics in real data: implications 
and corrective methods for missing or sparse relevance information 
of items and missing [20], ambiguous, or multiple group associa-
tions [17] are not yet well-understood. Moreover, the instabilities 
we observe in our sensitivity analysis points to the need to work 
towards designing robust and efcient fair ranking metrics and 
develop a body of research that can lend external support for choos-
ing where in the design space best meets a particular fairness goal. 
We also expect simulation studies will yield a much deeper insight 
into the diferences we observed applying metrics across diferent 
tasks and datasets, understanding more thoroughly the impact of 
factors like relevant set size, soft association, and missing relevance 
information, among others. 

Signifcant progress has been made in the last 2–3 years on 
measuring the fairness of rankings, but more work is needed in 
order to understand how best to design and apply these metrics. 
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