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Abstract
In the research literature, evaluations of
recommender system effectiveness typically
report results over a given data set, pro-
viding an aggregate measure of effective-
ness over each instance (e.g. user) in the
data set. Recent advances in information
retrieval evaluation, however, demonstrate
the importance of considering the distribu-
tion of effectiveness across diverse groups
of varying sizes. For example, do users
of different ages or genders obtain simi-
lar utility from the system, particularly if
their group is a relatively small subset of
the user base? We apply this consider-
ation to recommender systems, using of-
fline evaluation and a utility-based metric
of recommendation effectiveness to explore
whether different user demographic groups
experience similar recommendation accu-
racy. We find demographic differences in
measured recommender effectiveness across
two data sets containing different types of
feedback in different domains; these differ-
ences sometimes, but not always, correlate
with the size of the user group in question.
Demographic effects also have a complex—
and likely detrimental—interaction with
popularity bias, a known deficiency of
recommender evaluation. These results
demonstrate the need for recommender

∗ This paper can be reproduced with scripts available
at https://dx.doi.org/10.18122/B2GM6F.
† This paper is an extension of the poster by Ekstrand
and Pera (2017).

system evaluation protocols that explicitly
quantify the degree to which the system
is meeting the information needs of all its
users, as well as the need for researchers
and operators to move beyond näıve eval-
uations that favor the needs of larger sub-
sets of the user population while ignoring
smaller subsets.

Keywords: recommender systems, fair
evaluation

1. Introduction

Recommender systems are algorithmic tools for
identifying items (e.g., products or services) of in-
terest to users (Adomavicius and Tuzhilin, 2005;
Ekstrand et al., 2010; Ricci et al., 2015). They
are usually deployed to help mitigate information
overload (Resnick et al., 1994). Internet-scale
item spaces offer many more choices than hu-
mans can process, diminishing the quality of their
decision-making abilities (Toffler, 1990; Gross,
1964). Recommender systems alleviate this prob-
lem by allowing users to more quickly focus
on items likely to match their particular tastes.
They are deployed across the modern Internet,
suggesting products in e-commerce sites, movies
and music in streaming media platforms, new
connections on social networks, and many more
types of items.

We are concerned with the fairness of recom-
mender systems, a surprisingly tricky concept to
define. In addition to the numerous types and op-
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erationalizations of fairness in the research liter-
ature, recommender fairness must identify which
stakeholder groups to consider for fair treatment
(Burke, 2017).

Both offline (Herlocker et al., 2004; Shani
and Gunawardana, 2011) and online (Knijnen-
burg et al., 2012) evaluations of recommender
systems typically focus on evaluating the sys-
tem’s effectiveness in aggregate over the en-
tire population of users. While individual user
characteristics are sometimes taken into ac-
count, as in demographic-informed recommen-
dation (Pazzani, 1999; Ghazanfar and Prugel-
Bennett, 2010), the end evaluation still aggre-
gates over all users.

Recent developments in human-centered infor-
mation retrieval have incorporated user demo-
graphics and characteristics to evaluate search
engines and understand users’ search behavior.
Weber and Castillo (2010) use light user informa-
tion augmented with census-based demograph-
ics to understand who is using a search engine.
Mehrotra et al. (2017) follow this trend by mea-
suring Bing’s ability to satisfy the information
needs of different subgroups of its user popula-
tion, e.g. assessing whether it meets the needs
of grandparents as effectively as those of young
professionals.

This attention is necessary because the largest
subgroup of users will tend to dominate over-
all statistics. If other subgroups have different
needs, their satisfaction will carry less weight
in the final analysis. This can lead to a mis-
guided perception of the performance of the sys-
tem and, more importantly, make it more diffi-
cult to identify how to better serve specific de-
mographic groups.

Our fundamental research question is this: Do
different demographic groups obtain different util-
ity from the recommender system? This is a
starting point for many further questions, such
as whether particular demographic groups need
to be better served by recommender systems and,
if so, how they can be identified and supported
in their information needs.

To address this question, we present an em-
pirical analysis of the effectiveness of collabora-
tive filtering recommendation strategies, strati-
fied by the gender and age of the users in the
data set. We apply widely-used recommendation
techniques across two domains, musical artists

and movies, using publicly-available data. We
also explore the effect of rebalancing the data set
by gender, the influence of user profile size on
recommendation quality, and the interaction of
demographic effects with previously documented
biases in recommender evaluation, all in the con-
text of demographically-distributed differences in
effectiveness.

Our work is inspired by that of Mehrotra et al.
(2017). We translate the concepts of their anal-
ysis from search engines to recommender sys-
tems. While our experiment is less sophisticated
than Mehrotra et al.’s and necessarily limited by
our offline experimental setting, it is fully re-
producible using widely-distributed public data
sets and can be easily adapted to additional al-
gorithms, domains, and applications.

2. Background and Related Work

Recommender systems (Adomavicius and
Tuzhilin, 2005; Ekstrand et al., 2010) are algo-
rithmic tools for helping users find items that
they may wish to purchase or consume. They
have substantial influence; the best available
public data indicates that recommendation
drives 85% of Netflix video viewing (Gomez-
Uribe and Hunt, 2015) and 30% of Amazon
purchases (Linden et al., 2003).

2.1. Recommendation Techniques

There are a variety of families of recommendation
algorithms. Collaborative filters (Ekstrand et al.,
2010) mine user-item interaction traces, such as
purchase records, click logs, or user-provided rat-
ings of items, to generate recommendations based
on the behavior of other users with similar taste.
Content-based filters (Pazzani and Billsus, 2007;
Lops et al., 2011) use item content or metadata,
such as tags and text, to recommend items with
similar content to items the user has liked in the
past. Many production systems use a combi-
nation of these and other techniques as hybrid
strategies to enhance the overall recommendation
process (Burke, 2002; Bobadilla et al., 2013).

2.2. Recommender System Evaluation

Recommender systems are evaluated in offline
settings using evaluation protocols derived from
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information retrieval (Herlocker et al., 2004; Gu-
nawardana and Shani, 2009; Bellogin, 2012).
These protocols hide a portion of the data and
attempt to predict it using the recommenda-
tion model, measuring either the model’s ability
to predict withheld ratings (prediction accuracy
evaluation) or its ability to recommend withheld
items (top-N evaluation).

Top-N evaluation is widely regarded as the
preferred setting, as it reflects the end goal of
the recommender system—to recommend items
the user will like—more accurately than predict-
ing ratings. Offline top-N evaluation, however,
has significant known problems. Among these are
popularity bias (Bellogin et al., 2011), where the
evaluation protocol gives higher accuracy scores
to algorithms that favor popular items irrespec-
tive of their ability to meet user information
needs, and misclassified decoys (Ekstrand and
Mahant, 2017; Cremonesi et al., 2010), where
a good recommendation is erroneously penalized
because data on user preferences is incomplete.

Online evaluation, commonly using A/B tests
(Kohavi et al., 2007) and measuring user response
to recommendation, is the gold standard for effec-
tiveness and avoids many of the problems of of-
fline evaluation. User studies (Knijnenburg et al.,
2012) allow even deeper insight into why users re-
spond to recommendations in the way that they
do. This type of study, however, is more expen-
sive to conduct (in terms of time, protocols, and
resources) than its offline counterpart (Shani and
Gunawardana, 2011).

2.3. Fairness in Recommender Systems

The recommender system research community
has long been interested in examining the so-
cial dimension of recommendation; the earliest
modern recommender systems were developed in
a human-computer interaction setting (Resnick
et al., 1994; Hill et al., 1995), and there has been
work on how they promote diversity or balka-
nization (van Alstyne and Brynjolfsson, 2005;
Hosanagar et al., 2013).

More recent work has begun to consider ques-
tions of fairness in recommendation. Propos-
als for fair recommendation methods include pe-
nalizing algorithms for disparate distribution of
prediction error (Yao and Huang, 2017), balanc-
ing neighborhoods before producing recommen-

dations (Burke et al., 2017), and making recom-
mended items independent from protected infor-
mation (Kamishima and Akaho, 2017).

Burke (2017) taxonomizes fairness objectives
and methods based on which set of stakehold-
ers in the recommender system are being con-
sidered, as it is meaningful to consider fairness
among many groups in a recommender system.
In our work, we examine the C-fairness of rec-
ommender algorithms: whether or not they treat
their users (consumers) fairly.

2.4. Demographic-Aware Evaluation

Traditionally, demographic information have
been considered in the past to improve the ef-
fectiveness of diverse tasks, from text classifica-
tion (Hovy, 2015), to search (Weber and Castillo,
2010), and recommendation (Said et al., 2011).
Unfortunately, little is known about the effects of
demographic information when it comes to eval-
uation tasks (Langer and Beel, 2014).

Typical evaluations average over all users or
data points, providing a simple aggregate mea-
surement of the recommender’s effectiveness.
However, user satisfaction in a recommender sys-
tem depends on more than accuracy (Herlocker
et al., 2004; Langer and Beel, 2014). In fact,
Mehrotra et al. (2017) demonstrate that this
näıve approach to simply aggregate measure-
ments masks important differences in how differ-
ent groups of users experience the system. The
system may be delivering high-quality service
to one subset of its user group, while another
smaller group of users receives lower-quality rec-
ommendations or search results; the overall met-
ric will not reward effort that improves the ex-
perience of minority users as much as it rewards
efforts that make things better for those already
well-served.

The fundamental thrust of our present work is
to translate this idea from the online web search
setting employed by Mehrotra et al. to offline
evaluation of recommender systems, and examine
whether applying existing algorithms to existing
public data sets will provide comparable utility
to different groups of users. The discussion pre-
sented in this paper expands the initial analysis
presented by Ekstrand and Pera (2017).
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3. Data and Methods

We used the LensKit recommender toolkit (Ek-
strand et al., 2011) to build and evaluate several
collaborative filtering algorithms across multiple
public data sets with different types of feedback
in multiple product domains.

3.1. Data Sets

While there are many public records of ratings,
plays, and other common recommender inputs
for use in research, few of them have the neces-
sary user demographic information to assess bias
in recommender effectiveness. We have found
three that have the necessary data: early ver-
sions of the MovieLens data (Harper and Kon-
stan, 2016) and the two Last.FM data sets col-
lected by Celma (2010). Table 1 summarizes
these data sets.

Table 1: Summary of data sets

Datasets Users Items Pairs Density

LFM1K 992 177,023 904,625 0.52%
LFM360K 359,347 160,168 17,559,443 0.03%
ML1M 6,040 3,706 1,000,209 4.47%

The LFM1K data set contains 19M records of
992 users playing songs from 177K artists, gath-
ered from the Last.FM audioscrobbler. We ag-
gregated this data at the artist level to pro-
duce play counts for 904K user-artist pairs. The
LFM360K data set contains the top 50 most-
played artists from 360K users along with their
play counts, covering 160K artists. Both data
sets contain gender, age, and sign-up date for
many users (Figure 1 shows demographic cover-
age).

The ML1M data set contains 1M 5-star rat-
ings of 3,900 movies by 6,040 users who joined
MovieLens, a noncommercial movie recommen-
dation service operated by the University of Min-
nesota, through the year 2000. Each user has
a self-reported age, gender, occupation, and zip
code. Some time after releasing the 1M data set,
MovieLens stopped collecting demographic data
from new users, so the larger recent data sets
(10M and 20M) do not contain the data required
for our experiment.

3.2. Source Data Distributions

Differences in recommender effectiveness need to
be understood in the context of the demographic
distribution of the underlying data.
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Figure 1: User distribution by demographic
group. Numbers in bars are the number of users
in that bin.
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Figure 2: Median items consumed by users in
each demographic group. We omit LFM360K
since it only contains each user’s top 50 artists.

Figure 1 shows the distribution of each data
set. All three data sets exhibit similar distribu-
tions of user genders, with the majority of users
reporting as male; LFM1K is the least imbal-
anced. The largest block of ML1M users be-
long to the [25-35] group, whereas a plurality of
LFM360K users belong to the [18-24] group; most
LFM1K users did not report their age. Approxi-
mately 10% of LFM360K users declined to share
their gender while close to 20% declined to share
their age. All user records in the ML1M data
set contain full demographic information. For
consistency among the reported results, we bin
Last.FM users into the same age groups used in
the ML1M data set throughout.
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Figure 2 shows user activity levels, as measured
by the number of movies rated or artists played,
in each user group. Men are more active than
women in both data sets. The activity-age re-
lationship in ML1M data almost follows the de-
mographic distribution, with those groups that
have more users also having more active users;
the small number of users in most age brackets in
LFM1K preclude drawing conclusions from age-
activity relationships in that data.

3.3. Experimental Protocol

We partitioned each data set with 5-fold cross-
validation. Our primary results use LensKit’s de-
fault user-based sampling strategy: select 5 test
sets of users, and for each user select 5 ratings
to be the test ratings; the rest of those users’
ratings, along with all ratings from users not in
that test set, comprise the train set for that test
set. For LFM360K, we sampled 5 disjoint sets
of 5000 test users (or items) for each test set to
decrease compute time. For LFM1K and ML1M,
we partitioned the users into 5 disjoint sets.

We also tested Bellogin’s U1R method (Bel-
login, 2012) for neutralizing popularity bias; this
works exactly like the default, except it picks test
sets of items instead of users, and it generates a
different recommendation list for each user-item
pair in the test data, with that item as the only
test item to be found. The idea is that, by hav-
ing the same number of test ratings for each item,
recommenders that favor popular items can’t win
simply by having popular items be the right an-
swer more often than unpopular ones.

3.4. Performance Metrics

We measure recommender effectiveness us-
ing Normalized Discounted Cumulative Gain
(nDCG) (Järvelin and Kekäläinen, 2002), a
widely-accepted measure of the effectiveness of a
recommender system. nDCG measures the util-
ity that a user is expected to obtain from a rec-
ommendation list, based on that user’s estimated
utility for individual items and the position in the
list at which those items were presented. The
nDCG for a recommendation list L generated for
user u is computed with Equation 1:

nDCGL,u =
DCGL,u

IDCGu
(1)

DCGL,u is defined by Equation 2, where li is the
i-th item in list L and µu(li) is user u’s utility for
item li, and IDCGu is computed as DCGL,u, with
a list consisting only of the user’s rated items in
non-increasing order of utility.

DCGL,u = µu(l1) +

|L|∑
i=2

µu(li)

log2i
(2)

nDCGL,u quantifies the utility achieved by a
recommendation list as a fraction of the total
achievable utility if the recommender could per-
fectly identify the user’s most-preferred items.
For the ML1M data set, we define µu(li) as
the user’s rating for movie li; for the Last.FM
data sets, we use the number of times the user
has played the artist. Items for which no data
is available are assumed to have a utility of 0.
Although this has significant conceptual prob-
lems (Ekstrand and Mahant, 2017), it is stan-
dard practice in recommender systems research,
and there is no widely-accepted improvement.

3.5. Algorithms

We employed several classical and widely-used
collaborative filtering algorithms, as imple-
mented by LensKit. We operated each algorithm
in both explicit (rating-based) and implicit (con-
sumption record) feedback mode.

• Popular (Pop), recommending the most
frequently-consumed items.

• Mean, recommending the items with the
highest average rating.

• Item-Item (II), an item-based collaborative
filter (Sarwar et al., 2001; Deshpande and
Karypis, 2004) using 20 neighbors and co-
sine similarity. The explicit-feedback ver-
sion normalizes ratings by subtracting item
means; the implicit-feedback version re-
places the weighted average with a simple
sum of similarities.

• User-User (UU), a user-based collaborative
filter (Resnick et al., 1994; Herlocker et al.,
2002) configured to use 30 neighbors and co-
sine similarity. The explicit-feedback variant
uses user-mean normalization for user rating
vectors, and the implicit-feedback variant
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again replaces weighted averages with sums
of similarities. User-user did not provide
effective recommendations on the Last.FM
data, so we exclude it from that data set’s
results.

• FunkSVD (MF), the popular gradient de-
scent matrix factorization technique (Funk,
2006; Paterek, 2007) with 40 latent features
and 150 training iterations per feature.

In the results, each algorithm is tagged with
its variant. Algorithms suffixed with ‘-E’ are
explicit-feedback recommenders (applicable only
to ML); ‘-B’ are implicit-feedback recommenders
that only consider whether an item was rated or
played, irrespective of the number of plays (both
data sets); and ‘-C’ are implicit-feedback recom-
menders that use the number of times an artist
was played as repeated feedback (LFM1K and
LFM360K), log-normalized prior to recommen-
dation.

The purpose of this work is not to compare
algorithms, but to compare recommender per-
formance across demographic groups. We have
selected these algorithms to provide a represen-
tative sample of classical collaborative filtering
approaches.

4. Results

Using the data and methods presented in Section
3, we discuss below the results of the experiments
conducted to quantify user satisfaction with pre-
sented recommendations among different demo-
graphic groups. For doing so, we consider three
different perspectives that guide our assessments:
(i) analysis based on raw data, i.e., considering
all users in the data sets, (ii) analysis based on
user activity levels, i.e., controlled profile size,
and (iii) analysis based on gender-balanced data
sets.

4.1. Basic Results

In order to quantify to what extent demograph-
ics affect the overall satisfaction obtained by the
users, we conducted an experiment that considers
the performance of traditional recommendation
algorithms for different gender and age groups,
respectively.

Figure 3 illustrates the overall satisfaction
obtained by each gender group, measured by
nDCG, whereas Figure 4 does the same for users
grouped by age.

II−B II−E Mean−E MF−B MF−E Pop−B UU−B UU−E

M
L1M

A
ny F M

A
ny F M

A
ny F M

A
ny F M

A
ny F M

A
ny F M

A
ny F M

A
ny F M

0.0

0.1

0.2

0.3

nD
C

G

II−B II−C II−CS MF−B MF−C Pop−B Pop−C

LF
M

1K
LF

M
360K

A
ny F M N
A

A
ny F M N
A

A
ny F M N
A

A
ny F M N
A

A
ny F M N
A

A
ny F M N
A

A
ny F M N
A

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

gender

nD
C

G

Figure 3: Algorithm performance by gender.
Highlighted cell is for the algorithm with the best
overall performance on that data set.

For each data set’s best-performing algorithm
(highlighted), we compared the differences in
utility for each demographic group. ML1M and
LFM1K have statistically-significant differences
between gender groups, and LFM360K has signif-
icant differences between age brackets (Kruskal-
Wallis p < 0.01 with the Bonferroni correction
for multiple comparisons).

4.2. Controlling for Profile Size

As seen in Figure 2, different demographic groups
have different activity levels as measured by the
number of items they have rated or consumed.
The size of a user’s profile can be a factor in their
recommendation utility, given that more items
provide a stronger basis for recommendation. To
control for the effect of profile size on user sat-
isfaction, we fitted linear models predicting the
nDCG using the number of items in the user’s
profile (excluding LFM360K, since it only con-
tains each user’s top 50 artists). We used the av-
erage nDCG achieved by all algorithms for a par-
ticular user as the dependent variable, so we are
only predicting a single metric per user; this cap-
tures an overall notion of the ‘difficulty’ of pro-
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Figure 4: Algorithm performance by age. Highlighted cell has highest overall accuracy. We omit
LFM1K because most users in that data set lack age data.

ducing effective recommendations for that user.
Figure 5 shows the fitted models; we apply a log
transform to the item count and take the square
root of the nDCG to achieve a better fit. Sur-
prisingly, there is a negative relationship between
user profile size and recommendation accuracy;
the exact cause is unknown, but we suspect that
users with more items in their profile have al-
ready rated the ‘easy’ items, so recommending
for them is a harder problem.
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Figure 5: Models predicting nDCG with profile
size.

Figure 6 shows the nDCG for each group af-
ter removing the effect of user profile size. We
see that the demographic effects observed in Sec-
tion 4.1 remain after this control, indicating a
demographic effect of training the models on the
data beyond that explained by user profile size.
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(a) Corrected utility by gender.
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Figure 6: Recommendation utility after control-
ling for profile size.

4.3. Resampling for Balance

As shown in Figure 1, both ML1M and LFM360K
data sets include a larger proportion of male
users, unbalancing the training data. As prepro-
cessing data to produce fair training data is one
way to train fair models (Kamiran and Calders,
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2009), we resampled the ML1M and LFM360K
data sets to produce gender-balanced versions of
each and re-trained the algorithms.

We balanced the data sets by identifying users
with known gender information, and randomly
sampling without replacement the same number
of female and male users (1500 samples each for
the ML1M data set and 75000 samples each for
LFM360K data set).

Figure 7 shows the experiment results on the
gender-balanced data sets, and Table 2 shows the
numeric change from the unbalanced experiment
for the best-performing algorithm on each data
set. We repeated the Kruskal-Wallis test on both
sampled ML1M and LFM360K data sets, and it
did not find a statistically significant difference
between groups on either data set. Resampling
the data, while reducing recommender accuracy
slightly, did not create new gender differences in
performance for LFM360K, and seems to have
reduced the difference for ML1M. We are not sure
that it went entirely away, as the Kruskal-Wallis
test may be overly conservative and does not test
directly for the elimination of an effect, but it
does seem to have diminished. Resampling so
that each group has the same number of ratings
may eliminate the difference.
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Figure 7: Algorithm accuracy by gender on bal-
anced data sets. Highlighted cell is for the algo-
rithm with the best overall performance on that
data set.

4.4. Reducing Popularity Bias

To reduce the effect of popularity bias, we ran the
ML1M version of the experiment using Bellogin’s

Table 2: Changes on nDCG observed on balanced
vs. raw data on ML1M and LFM360K data sets

Datasets Algorithm Gender nDCG
nDCG

(Balanced
data)

Relative
Difference

ML1M UU-B Female 0.337 0.334 1.03%
ML1M UU-B Male 0.351 0.344 2.22%
ML1M UU-B Any 0.347 0.339 2.54%
LFM360K II-CS Female 0.293 0.296 1.11%
LFM360K II-CS Male 0.301 0.298 0.76%
LFM360K II-CS Any 0.297 0.297 0.06%

U1R protocol, as described in Section 3.3. Since
this protocol partitions items instead of users,
different users may have different numbers of test
items, and the distribution of user demographics
may differ from the underlying data. Figure 8a
shows the distribution of test pairs per user, and
Figure 8b shows the demographic distribution of
the users in the test data. This distribution cor-
responds well to the underlying user distribution.
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(b) Gender distribution of test pairs and test users.

Figure 8: Distribution of test data in ML1M U1R
experiment.

Figure 9 shows accuracy by demographic group
for the best algorithm for each data set under
the U1R protocol. The differences on gender
are consistent with the basic results in Figure 3.
We compared two averaging strategies, averaging
across all user-item pairs by user gender and av-
eraging each user’s recommendation results prior
to averaging all users with a particular gender,
and saw no difference.

Age tells a different story — on the LFM360K,
we see a different pattern in the distribution of
accuracy across ages than we do under the user-
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based evaluation protocol in Figure 4. It is not
clear which provides a more accurate picture, but
this does demonstrate that correcting for one ef-
fect (popularity bias) can change the results for
another effect (demographic bias).
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Figure 9: Recommender effectiveness under U1R
protocol. The best overall algorithm for each
data set is shown.

5. Discussion and Limitations

Having observed some differences in rec-
ommender performance between demographic
groups, we now turn to the implications of our
results and some of their limitations.

5.1. Implications for Recommender
Evaluation

The existence of differences in measured rec-
ommender performance between demographic
groups indicates a need to consider who is ob-
taining how much benefit from a recommender
system. If some users are underserved by the
recommender, it may be indicative of an area for
improvement, particularly if that group of users
represents a market segment in which the rec-
ommender operator would like to expand their
business.

Research and production evaluation of recom-
mender systems needs to account for how dif-
ferent subsets of the user population should be

weighted. There is not necessarily a one-size-fits-
all answer to the question of how to structure an
evaluation; it is a decision that needs to be made
based on the values and goals of the business or
research program. Our methods and results can
provide data to understand the ramifications of
the decisions made about recommender evalua-
tion.

5.2. Interaction with Popularity Bias

Popularity bias (Bellogin et al., 2011) describes
the phenomenon in which offline top-N recom-
mender evaluation gives higher scores to algo-
rithms that favor popular items. The extent to
which this is a defect in the evaluation — favor-
ing popularity irrespective of user preference —
versus an actual measurement of the effectiveness
of popular recommendations is unclear; it is be-
lieved that it represents a significant deviation
from ‘true’ performance, but the degree of that
deviation is difficult to quantify.

From first principles, we expect popularity bias
to exacerbate demographic biases: the patterns
of the largest group of users will dominate the list
of most-popular items, so favoring popular rec-
ommendations will also favor recommendations
that are more likely to match the taste of the
dominant group of users at the expense of other
groups with different favorite items.

However, our empirical results do not demon-
strate that effect in the data we have. Some of
the demographic differences in recommender ac-
curacy that we see, such as the ML1M gender dif-
ference, correlate with the size of the user group;
others, such as LFM1K gender differences and
LFM360K age differences, do not.

It is difficult to generalize about the causes
of the differences we have seen from only three
data sets, but it is clear that we need to look
beyond popularity bias and demographic group
size to understand the drivers of demographic dif-
ferences in recommender performance. The con-
sistency of the results across algorithm families,
however, suggests some robustness to these ef-
fects.

Further, we have observed that applying one
technique for reducing popularity bias can shift
our measurements of demographic bias. This in-
dicates tradeoffs in the measurement of different
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biases, so that applying the popularity bias re-
duction method is not a clearly correct decision.

5.3. User Retention

One of the goals of recommender systems is to en-
gage users with the systems themselves, so that
over time, users can benefit, in terms of person-
alization, given the availability of explicit prefer-
ence data.
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Figure 10: Retention rate for each demographic
group on the ML1M data set (with 95% Wilson
confidence intervals).

A way to quantify this engagement is through
retention: do users continue using the system?
The ML1M data set includes timestamps for each
rating, allowing us to analyze user activity over
time; we use this to measure retention and exam-
ine its relationship to demographic group. We di-
vide user rating activity into sessions by consid-
ering the user to be starting a new session when-
ever there is a gap of at least an hour between
two ratings (Halfaker et al., 2014). Figure 10
shows the retention rate (the percentage of users
who returned for a second session) for each de-
mographic group.

We observe that men have a higher retention
rate than women (p < 0.005); in the ML1M
data set, the algorithms we tested provide more
accurate recommendations to men than women.
While this by no means demonstrates a causal
link — for one thing, we are not testing the same
algorithm and implementation that MovieLens
employed when these users were active — it sug-
gests room for further exploration. The link be-
tween recommendation quality and user retention
is key to the online testing employed by large-
scale recommender system operators such as Net-
flix.

5.4. Limitations of Data

Our analysis on the ML1M data set was con-
ducted with users’ explicit feedback, the provided
ratings. While this data set shows that a cer-
tain demographic group dominates its counter-
parts in providing ratings in the system, it does
not account for implicit feedback, or the behav-
ior of users who watched movies without nec-
essarily providing ratings for them. To ensure
that we accounted for the differences in how de-
mographic groups prefer to provide feedback, we
also performed an analysis on Last.FM based on
the number of times a song was played. Our re-
sults show consistency across the different groups
irrespective of the type of user feedback, i.e., im-
plicit or explicit.

While our results highlight the need to con-
sider disparate demographic groups when eval-
uating recommender systems to better account
for user satisfaction, the users of MovieLens and
Last.FM may not be representative of general
recommender system users. Both of these sys-
tems (particularly at the time the Last.FM data
was collected) appeal to experienced users who
care deeply about their movies and music. Ca-
sual users are more likely to use services such as
Netflix and Spotify, and may exhibit markedly
different behavior and experience different rec-
ommender utility than the expert users in the
data sets we examined. Unfortunately, data
from more widely-used systems with sufficient at-
tributes to look for demographic effects is diffi-
cult to find. Many widely-used data sets, such
as Amazon.com and Netflix, do not contain user
demographics.

5.5. Limitations of Evaluation Protocol

The fact that our results are in an entirely offline
experimental setting also introduces limitations.
Our data cannot distinguish whether the differ-
ences in measured performance are due to ac-
tual differences in the recommender’s ability to
meet users’ information needs, or differences in
the evaluation protocol’s effectiveness at measur-
ing that ability. While we suspect that they do
reflect actual differences in recommender utility,
additional study with online evaluation is needed
to complement and calibrate these results, as the
correlation between offline accuracy and online

10
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measures of effectiveness is often weak (Rossetti
et al., 2016).

A similar concern can be raised for online pro-
tocols (Mehrotra et al., 2017), but the closer con-
nection between online measures and long-term
customer value and experience improves their ex-
ternal validity. However, even if our observed dif-
ferences are due in significant part to limitations
of the evaluation protocol, the result is still in-
teresting: biases in the evaluation protocol for or
against groups of users would impede the devel-
opment of fair recommender systems. Even insti-
tutions that can carry out online evaluations use
offline protocols to pre-screen algorithms prior to
live deployment, and offline evaluation metrics
are the basis for the objective functions in many
recommender model-training processes.

5.6. Limitations of Algorithm Selection

While we have tested representatives of sev-
eral key families of collaborative filtering algo-
rithms, there are many types of algorithms that
we have not considered. Two notable omissions
are content-based filters, which we omitted be-
cause only one of our data sets has sufficient
data to support them, and learning-to-rank rec-
ommenders, which LensKit does not yet provide.

Our evaluation methodology and open experi-
mental scripts make it easy to re-run our analyses
on additional algorithms as they become avail-
able in the underlying software.

5.7. Choice of Metric

There are many widely-used metrics that can
be used to evaluate recommender systems (Gu-
nawardana and Shani, 2009). For clarity and
space, we focus our results in Section 4 on nDCG,
because it considers all of a user’s test items and
has a good conceptual mapping to recommen-
dation utility. We included several metrics in
our experimental runs, however, and they showed
similar result trends.

Figures 11 and 12 show our key results from
Section 4.1 with the Mean Reciprocal Rank
(MRR) metric (Kantor and Voorhees, 1997).
MRR measures recommendation accuracy effec-
tiveness by taking the reciprocal of the position
of the first relevant suggestion in each user’s
ranked list recommendations and averages this
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Figure 11: Algorithm performance based on
Mean Reciprocal Rank for users grouped by gen-
der.

value over all users in the data set. These per-
formance trends match those in Figures 3 and
4: (i) male users gain better utility from varied
recommendation strategies than female users in
ML1M and LFM360K, (ii) female users gain bet-
ter utility on LFM1k data sets, and (iii) there are
age differences that do not map to demographic
group size. The difference in recommender sys-
tem satisfaction among users of different genders
is more prominent when measured by MRR than
nDCG. We hypothesize that this is due to the fact
that MRR penalizes recommendations that move
the first relevant item (i.e., highly rated items)
further down the list more heavily than nDCG,
especially in long lists. On the other hand, nDCG
considers the position of all relevant recommen-
dations, along with their value to the user, in-
stead of only observing the position of the first
item. Which metric is a better measurement of
usefulness depends on the precise recommenda-
tion task.

5.8. Ethical Considerations

As our work is entirely based on widely-
distributed public data and we did not per-
form any data linking that might expose or
deanonymize users in the underlying data sets,
it does not place MovieLens or Last.FM users at
any risk to which they have not already been ex-
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Figure 12: Algorithm performance based on Mean Reciprocal Rank for users grouped by age.

posed for years by the publication of these data
sets.

6. Conclusion and Future Work

We set out to consider whether recommender sys-
tems produced equal utility for users of differ-
ent demographic groups. Using publicly available
data sets, we compared the utility, as measured
with nDCG, for users grouped by age and gender.

Regardless of the recommender strategy con-
sidered, we found significant differences for the
nDCG among demographic groups. Selecting
the best algorithm from the families we tested,
ML1M and LFM1K data sets showed statisti-
cally significant differences in effectiveness be-
tween gender groups while the LFM360K data
set highlighted a significant effect based on user
age.

The demographic effect remains when control-
ling for the amount of training data available for
a user; it is diminished, but may not entirely
disappear, when resampling the underlying data
to train the recommender on a gender-balanced
data set.

Notably, the effects in utility did not exclu-
sively benefit large groups: we observed more ac-
curacy for women on the Last.FM data, despite
the lower representation of female users in the
respective Last.FM data sets.

6.1. Future Work for Research

While our analysis focused on whether this ef-
fect could be found across a variety of common
recommendation algorithms, the differences ap-
pear to vary from algorithm to algorithm. This
suggests there is room for considering how differ-
ent algorithms respond to evaluation and what
characteristics contribute to more uniform utility.
Analysis can also be expanded to include more
families of algorithms, such as content-based rec-
ommendation and learning-to-rank techniques.

Having found this effect with age and gender,
we have not yet considered intersectionality: how
does recommender effectiveness vary with the in-
teraction of multiple demographic data? Our
analysis did not find that smaller groups were
always disadvantaged, so more research should
be done to understand why groups are unevenly
advantaged by recommendation algorithms.

There is also room for this analysis to be re-
peated across other item domains. How rec-
ommender system utility compares across demo-
graphics may be especially interesting for do-
mains like real estate, housing, and job recom-
mendations, areas with well-documented histori-
cal discrimination.

6.2. Future Work for Industry

Given the hazards of publishing data sets which
include individual user’s demographic informa-
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tion, there are limits to the advances academia
can pursue in this work. As it falls to indus-
try to consider whether their own recommender
systems provide comparable utility across demo-
graphics, so does the responsibility for publish-
ing their results. We see the work of Mehrotra
et al. (2017) as an exemplary start in this di-
rection, although we would like to see additional
details provided to ease replication of the results
for other system operators.

6.3. Towards Fair Recommendation

Research on the fairness of recommender systems
is just getting started, and there are many im-
portant questions to explore. We have focused
on one small corner of the problem: the equity of
recommender utility as experienced by different
groups of users. As Burke (2017) shows, there are
many more dimensions to the problem, such as
the equitable treatment of content producers, as
well as the distribution of non-accuracy recom-
mendation value like diversity and serendipity.
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