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Abstract. While there has been significant research on statistical tech-
niques for comparing two information retrieval (IR) systems, many IR
experiments test more than two systems. This can lead to inflated false
discoveries due to the multiple-comparison problem (MCP). A few IR
studies have investigated multiple comparison procedures; these studies
mostly use TREC data and control the familywise error rate. In this
study, we extend their investigation to include recommendation system
evaluation data as well as multiple comparison procedures that controls
for False Discovery Rate (FDR).
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1 Introduction

Effective evaluation of information retrieval and recommender systems requires
an assessment of whether the difference in performance metrics observed in an
experiment likely represent a real improvement. Statistical tests are designed to
fill this gap, assessing the likelihood that an observed improvement could be seen
with random chance. Several studies have investigated which significance tests
are most appropriate for analyzing evaluation results [15,16,13,10,19,21,14,18,12]
mostly examining comparisons between two systems; a few studies [6,20,5] con-
sider comparing more than two systems.

Comparing all pairs of k systems requires m = k(k − 1)/2 tests, while the
significance level α controls the probability of falsely finding significance only
for a single test; with m tests, the probability of incorrectly finding a significant
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difference increases to 1 − (1 − α)m. This is known as the multiple comparison
problem (MCP).

One common approach to addressing the MCP is to adjust the p-value to
control the traditional family-wise error rate (FWER). FWER is the probability
of making at least one false positive in m experiments. Another approach to
adjusting p-values is to control the false discovery rate (FDR) [2]. FDR is the
expected proportion of false positive results out of all positive test results.

When we fail to apply appropriate statistical analysis that addresses the
MCP, we run the risk of either failing to advance algorithmic methods that
should be advanced or falsely identifying interesting results where none exist.
Both of these problems can hinder progress in information retrieval research
and application both by holding back improvements and by spending time on
methods whose observed improvement was a fluke.

Previous IR studies that have investigated the MCP focused on multiple
comparison methods that controlled the FWER and used TREC data for their
analysis. In this study, we extend our analysis to include procedures that control
the FDR in p-value adjustment and to use recommendation system evaluation
data. Recommendation system data have a few distinguishing features such as
large sample size and high sparsity which induces bias in effectiveness metrics [1].
Our goal is to understand how controlling for each of these different error rate
impacts IR and recommendation system evaluation result analysis and enable
researchers choose the appropriate test for their analysis.

To that end, we address the following research questions:

– RQ1 - When systems have equivalent performance (the null hypothesis is
true) do procedures that correct for MCP control the family-wise error rate
or false discovery rate at a specified α level?

– RQ2 - How many missed findings does controlling for FWER and FDR lead
to respectively?

– RQ3 - Which method does best in identifying as many actual differences
between systems as possible while still maintaining a low false positive rate?

We find that multiple correction tests meets its objective of controlling the
FWER and FDR at or below the given α level when the sample size is small
(≤ 1000). However, when both the sample size and the number of hypothesis
tests are large, they control the error rate at a much higher level than the target
α level. We also observe that correction tests that control the false discovery
rate instead of the family-wise error rate are more powerful.

2 Related Works and Background

A number of studies [12,6,21,14] have investigated appropriate statistical meth-
ods for analyzing IR evaluation results for experiment comparing two systems. A
few studies have focused on multiple testing adjustments when comparing more
than two systems. Tague-Sutcliffe and Blustein [20] adjusted the p-value using
the Scheffe’s method [17] and found that only large effect sizes could be detected.
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Boytsov et al. [5] focused on adjusting p-values for non-parametric statistical pro-
cedures and found that the correction procedures found fewer true differences
compared to unadjusted tests. Carterette [6] used a single-step method that re-
lied on multivariate Student distribution to adjust the p-value for MCP; like [20]
found that small pairwise differences were not detected.

There are two main approaches used in multiple hypothesis testing to correct
for multiple comparisons or alpha inflation: controlling for family-wise error rate
and controlling for false discovery rate.

2.1 Controlling the family-wise error rate

The family-wise error rate is the probability of having one or more false positives
out of all the hypothesis tests conducted. To guarantee that the probability of
having one or more false positives in m tests is α or less, Bonferonni adjusts the
significance level of each hypothesis test to α/m. We consider two of the popular
procedures in this study: Bonferroni [4] and Holms [9].

2.2 Controlling the false discovery rate

The false discovery rate (FDR) is the expected proportion of false positives (or
discoveries) among all positives/discoveries. Controlling the FDR instead of the
FWER is a more recent approach to addressing the multiple comparison prob-
lem. When all hypothesis are true, this error rate is equivalent to the FWER [2]
but may not be controlled at the same level otherwise. We investigated the Ben-
jamini & Hochberg (BH) [2] and Benjamini-Yekuteili (BY) [3] multiple correction
procedures in this study. BY makes fewer assumptions than BH.

3 Methodology and Data

We study the behavior of multiple-comparison corrections using simulated repli-
cations of search experiments on TREC 2013 Web [7] and a recommendation
experiment with MovieLens 100K [8]. We adopt the methodology developed by
Urbano and Nagler [22], which is based on marginal distributions and inter-
system dependencies. This methodology employs evaluation scores from each al-
gorithm run to construct parametric and semi-parametric models. These models
represent the marginal distribution of per-topic effectiveness scores for a system,
as well as vine copulas that models inter-system dependencies.

The TREC data comes with runs, and for MovieLens, we generated runs
using four collaborative filtering recommender algorithms (ALS BiasedMF, ALS
ImplicitMF, Item k-NN, and User-based k-NN) in various configurations from
the LensKit toolkit. All runs are evaluated using normalized Discounted Cumu-
lative Gain (nDCG), with a cutoff threshold set at 20 for TREC data and 100
for recommender system data.

This combination generates data that is realistic both in terms of score distri-
butions and inter-system correlations. To simulate an experiment with k systems,
the process begins by fitting a model to generate replicates:
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1. Randomly select k systems and their runs from the original data set.
2. Fit a marginal distribution FB to each run B. Using code from Urbano and

Nagler, candidate distributions take parametric (Truncated Normal, Beta,
and Beta-Binomial) and non-parametric (discrete kernel smoothing) forms,
and the best-fitting distribution is used.

3. Fit a Vine copula to model the joint score distributions between runs.

adjust_procedure Benjamini & Hochberg Benjamini & Yekutieli bonferroni holm none
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Fig. 1. When systems are equivalent (null hypothesis is true), the error rate is con-
trolled at a significance level (α) by each adjustment test. The control of the error rate
is determined by the sample size and number of hypothesis tests. We use all pairwise
hypothesis test which determines the number of hypothesis tests. (For example, 5 sys-
tems would give 10 hypothesis tests).

We assess significance with pairwise t-tests between systems [11]. To address
RQ1, which considers scenarios where systems have equivalent performance
(thus making the null hypothesis true), we simulate true null hypotheses with
all compared systems having the same mean effectiveness. The process involves:

1. randomly selecting a run, denoted as k0, from the k runs.
2. calculating its mean effectiveness μ0.
3. transforming the marginal distributions of the remaining k− 1 runs to have

the mean μ0.

To addressRQ2, which examines the ability of procedures controlling for FWER
and FDR to detect effects when they exist (i.e., when the null hypothesis is false),
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we simulate scenarios where system E outperforms system B by a specific effect
size of δ (effect size δ quantifies the magnitude of the difference in effectiveness
between two recommender algorithms, providing insight into the practical or
real-world significance of the findings). The simulation steps are as follows:

1. randomly select a run, denoted as k0 from the k runs.
2. calculate its mean effectiveness, μ0.
3. transform the marginal distributions of the other runs to have a mean of

μ0 + δ .

To address RQ3, which aims to identify the correction method most effective at
detecting actual differences between systems while maintaining a low false posi-
tive rate (in scenarios with a mix of true and false null hypotheses), we simulate
a mixture of equal and non-equal systems. The simulation process involves:

1. selecting a pair of runs and transforming their marginal distributions to have
the same mean, μ0.

2. choosing a different pair of runs and adjusting their marginal distributions
so that the difference in their means is δ.

We then simulate new experimental data with a sample size n:

1. Adjust marginal distributions for selected runs to match experimental con-
dition (all systems equal, one system better and k − 1 equal, or a mix of
equal and non-equal systems).

2. Draw n topics each with k pseudo-observations from the fitted copula.
3. Apply the adjusted inverse Cumulative Distribution Function (CDF) F−1

B

of each system to the corresponding pseudo-observations to get final scores.
4. Use paired t-test to compare all pairs of systems.
5. Correct the t-test’s p-values using the selected multiple comparison correc-

tion procedure to yield corrected p-values.
6. Calculate the false positives and/or power (as applicable) of comparing the

adjusted p-value to the significance threshold α.

We ran 10,000 simulations for each configuration, using k ∈ {3, 5, 7} and n
(n ∈ {25, 50, 100} for TREC, n ∈ {500, 1000, 5000} for MovieLens). For the case
of one system outperforming several baselines, we used effect sizes of 0.01, 0.05,
and 0.1; for a mix, we had pairs of equivalent systems and individual systems
with effect size δ over the pairs.

4 Results

Figure 1 shows the case corresponding to RQ1, wherein the null hypothesis
is true, indicating that all systems exhibit equivalent performance. We observe
that when the number of systems and sample size are small, or the number of
systems is large and the sample size is small, the correction procedures control
the error rate at (or below) the specified α significance level. However, when
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Fig. 2. The ability of adjustment procedures to find ‘real’ effects (statistical power)
while controlling for FWER and FDR at α = 0.05.

the sample size is large and the number of systems is large (specific with the
recommendation dataset), the error rate is inflated, but not nearly as inflated as
the uncorrected test.

Figure 2 presents the results for RQ2, showing that with the TREC style
experiment, when the sample size is small and when many tests are being con-
ducted, the correction procedures impose a fairly severe penalty which reduces
the statistical power. This is more pronounced with the Bonferroni test. Holms
and Benjamini & Hochberg tests have the most power while the Bonferroni test
has the least power. However, with the recommendation experiment, we observe
differences in statistical power between the adjustment tests only when both the
sample size and effect size are small. For the large sample sizes, there are no
differences in the statistical power between the correction procedures.

Figure 3 displays the results for RQ3, highlighting the influence of sample
size and the number of systems on the balance between error rates and the
power of correction procedures. We observe that as the sample size and number
of systems increase, the error rate and power also increase, while power decreases
and the error rate is maintained at or below the specified threshold when the
number of systems increases but the sample size is small.
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Fig. 3. A mixture of null hypothesis and non-null hypothesis (with effect size = 0.05).
The proportion of null hypothesis that are ≤ α (error rate) and the proportion of non-
null hypothesis that are < α (statistical power).

5 Discussion and Conclusion

We find that corrections for multiple comparisons generally behave as expected
in the small sample sizes of TREC-style IR experiments, controlling the error
rate below the target significance threshold. However, as the sample size and
number of systems increases, as in a large-scale search or recommendation ex-
periment, the corrections no longer keep the overall error rate under the target
level, although they still result in far fewer false discoveries than uncorrected
pairwise t-tests. Our results also show that while the corrections have differ-
ing power and fail to find small effects in small experiments, they recover their
power in a larger-scale experiment, and small effects are easily found even with
conservative corrections like Bonferonni.

The Benjamini-Yekuteili test showed the lowest error rate in experiments
with all systems equivalent, had greater power than the Bonferonni test at small
to medium sample sizes, and strikes a balance between power and error in mixed-
effect-size experiments. We therefore recommend it as the default correction for
comparing multiple systems in an IR experiment. In large-scale experiments, if
the computational and conceptual simplicity of the Bonferonni test is preferred,
it can be used without meaningful loss in power.
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7. Hagen, M., Völske, M., Gomoll, J., Bornemann, M., Ganschow, L., Kneist, F.,
Sabri, A.H., Stein, B.: Webis at trec 2013-session and web track. In: TREC (2013)

8. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis) 5(4), 1–19 (2015)

9. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics pp. 65–70 (1979)

10. Hull, D.: Using statistical testing in the evaluation of retrieval experiments. In:
Proceedings of the 16th annual international ACM SIGIR conference on Research
and development in information retrieval. pp. 329–338 (1993)

11. Ihemelandu, N., Ekstrand, M.D.: Statistical inference: The missing piece of recsys
experiment reliability discourse. arXiv preprint arXiv:2109.06424 (2021)

12. Ihemelandu, N., Ekstrand, M.D.: Inference at scale: Significance testing for large
search and recommendation experiments. In: Proceedings of the 46th International
ACM SIGIR conference on research and development in information retrieval (SI-
GIR’23) (2023)

13. Jones, K.S., Willett, P.: Readings in information retrieval. Morgan Kaufmann
(1997)

14. Parapar, J., Losada, D.E., Presedo-Quindimil, M.A., Barreiro, A.: Using score
distributions to compare statistical significance tests for information retrieval eval-
uation. Journal of the Association for Information Science and Technology 71(1),
98–113 (2020)

15. Rijsbergen, C.v.: Van. Information Retrieval, Butterworths 2 (1979)

16. Savoy, J.: Statistical inference in retrieval effectiveness evaluation. Information
Processing & Management 33(4), 495–512 (1997)
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