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Abstract

Since the introduction of their modern form 20 years ago, recommender systems
have proven a valuable tool for help users manage information overload. Two decades
of research have produced many algorithms for computing recommendations, mecha-
nisms for evaluating their effectiveness, and user interfaces and experiences to embody
them. It has also been found that the outputs of different recommendation algorithms
differ in user-perceptible ways that affect their suitability to different tasks and infor-
mation needs [Mcn+02]. However, there has been little work to systematically map
out the space of algorithms and the characteristics they exhibit that makes them more
or less effective in different applications. As a result, developers of recommender sys-
tems must experiment, conducting basic science on each application and its users to
determine the approach(es) that will meet their needs.

This thesis presents our work towards recommender engineering: the design of
recommender systems from well-understood principles of user needs, domain proper-
ties, and algorithm behaviors. This will reduce the experimentation required for each
new recommender application, allowing developers to design recommender systems
that are likely to be effective for their particular application.

To that end, we make four contributions: the LensKit toolkit for conducting ex-
periments on a wide variety of recommender algorithms and data sets under different
experimental conditions (offline experiments with diverse metrics, online user studies,
and the ability to grow to support additional methodologies), along with new devel-
opments in object-oriented software configuration to support this toolkit; experiments
on the configuration options of widely-used algorithms to provide guidance on tun-
ing and configuring them; an offline experiment on the differences in the errors made
by different algorithms; and a user study on the user-perceptible differences between
lists of movie recommendations produced by three common recommender algorithms.
Much research is needed to fully realize the vision of recommender engineering in the
coming years; it is our hope that LensKit will prove a valuable foundation for much
of this work, and our experiments represent a small piece of the kinds of studies that
must be carried out, replicated, and validated to enable recommender systems to be
engineered.
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Chapter 1

Introduction

R  is the practice of directly designing and implementing rec-

ommender systems to meet particular user information needs or business objectives from

well-understood principles. These principles encompass the requirements surrounding vari-

ous user information needs; the properties of recommendation domains that affect the utility

of recommendation; the characteristics of different algorithms for doing recommendation,

filtering, and information retrieval; and the way in which these properties interact to affect

the suitability of a complete recommendation solution to its intended purpose.

When this practice is feasible, the recommender engineer will build a new recommender

system through a standard engineering process:

1. Assess the requirements of various stakeholders in the recommender system, partic-

ularly the users and the business or organization operating the system.

2. Analyze the recommendation domain — movies, music, job listings, books, research

papers, a bit of everything — to identify properties that will affect the suitability of

various approaches. The Handbook of Recommender Engineering will provide guid-

ance on what properties to look for, such as sparsity (how many items are consumed

by the typical user), consumption cost, homogeneity, and perhaps many more.

3. Select and configure algorithms — or a combination of algorithms — that will meet

1



the stakeholder requirements in the given domain when embedded in a suitable user

experience.

The recommender systems community is, for better or worse, a long way from making

this vision a reality. Recommender systems provide users with useful recommendations

in many domains, and many techniques provide measurable benefit across various appli-

cations, but there is not yet a systematic understanding of why particular recommender

techniques work here or there, or what makes one technique preferable to another for any

given application. We could say that we know that recommendation works, but have little

understanding as to how.

Currently, recommender system developers have essentially two choices. The simplest

is to use an off-the-shelf algorithm, such as item-based collaborative filtering, that works

in many domains and blindly apply it. This will give them a working recommender system

that is probably better than no recommender — and will provide useful results in many

applications — but is not particularly well-tuned to any one of them. We have little reason

to believe that recommendation is a one-size-fits-all problem, and evidence that different

applications do indeed call for different techniques [Mcn+02].

The other, more demanding option is to build a specialized recommender for the par-

ticular application (e.g. recommending job listings to users of LinkedIn) and conducting

extensive simulations, field trials, and perhaps user studies to determine the best approach.

This option effectively requires each system builder to carry out basic scientific research

for every new recommender application; there is little understanding available to provide

guidance as to what approaches are likely to work better or worse in a given situation, so

they must try things and see what works.

Recommender engineering will allow developers to build specialized, high-quality so-

2



lutions to many recommendation problems without needing to conduct basic research for

each application. There will still be need for research on how to improve our techniques and

work in more exotic domains, and the high end of recommender development will still likely

need significant on-site study, but the overall quality of recommendation in day-to-day use

will hopefully improve.

In order to be able to engineer recommenders, however, we need significant advances

in knowledge on several fronts, including:

• What types of recommendations are needed to meet different types of user needs?

When do users need high novelty or exhaustive coverage of the domain?

• What properties of recommendation domains affect the performance of different tech-

niques towards meeting user needs?

• What are the tendencies and ‘behaviors’ of different recommendation techniques, and

what kinds of needs can they most suitably meet? The behaviors of algorithms may

well interact with the properties of the domain in subtle ways.

• How does the user experience — recommendation interface, preference elicitation or

inference system, etc. — interact with algorithm behavior, domain properties, and

tasks to affect the system’s overall suitability?

Previous work has found that different recommender algorithms exhibit identifiably dif-

ferent behaviors [Mcn+02; MKK06], and that these behaviors affect the algorithms’ suit-

ability for different recommendation tasks. However, there is much work to be done to

systematically map out the space of tasks, domains, and algorithms, and identify the prop-

erties that determine a recommender’s suitability.

3



While generalizability is a hallmark of scientific inquiry in general, it is particularly

important for the research needed to enable recommender engineering. We cannot study

every possible application and task in the research setting. Therefore, we need to study a

wide variety of tasks, domains, and algorithms in such a way so as to identify the questions

that need to be asked of new tasks and domains in order to design an effective recommender.

If, for example, the sparsity and diversity of the item space consistently affect the suitability

of particular techniques, then it is reasonable to identify those properties as key; an engineer

can then use the sparsity and diversity of a completely new domain as a guide to finding a

good recommendation solution.

It is also necessary for recommender systems research to be reproducible, so that the

science is of high quality, and the results can be validated and more easily generalized. It is

difficult to test the generalizability of a research result to a new domain if the original result

cannot easily be replicated at all.

Recommender engineering is unlikely to eliminate the need to test proposed solutions

for deployed applications. It should, however, significantly decrease the search space that

developers must consider. It is also possible that it will, in the end, prove to be an elusive

goal; that the noise of user behavior or other factors make it difficult to reduce recommenda-

tion to a manageable set of characteristics. We contend, however, that it is still a worthwhile

goal in the medium term. Even if recommender system developers must still conduct exten-

sive experiments in 20 years’ time, the research needed to build the kind of understanding

of recommendation that might enable engineering will still improve our understanding of

the problem greatly, and contribute to our scientific understanding of the way users interact

with information systems.

This dissertation is focused on enabling and launching the research that will hopefully

lead to recommender engineering becoming a reality. There is, as we have argued, a great

4



deal of work to do, and we anticipate that it will be at least a decade before it is possible to

write a Handbook of Recommender Engineering. In this thesis, we make advance the state

of the art in two necessary directions:

• Improving the reproducibility of recommender systems research and the usability of

research results.

• Examining how recommender algorithms differ in ways that could affect their suit-

ability to different users or tasks.

The rest of this thesis is organized as follows:

• In Chapter 2, we survey related work and background literature on recommender

systems and their design evaluation.

• Chapter 3 presents LensKit, an open-source software package we have developed for

reproducible recommender systems research. LensKit provides a common platform

for developing algorithms, measuring their performance on different data sets, and

comparing new ideas against current best practices. These capabilities are crucial

to supporting the wide range of research we envision in a reproducible and robustly

documented fashion.

• Chapter 4 describes a new dependency injection framework we have developed with

novel capabilities for configuring object-oriented programs made up of many com-

posable components.

• Chapter 5 documents experiments on the impact of different configuration options for

common recommender algorithms, in the spirit of previous comparative evaluations

of recommender system designs [HKR02]. The goal of this work is to provide insight

5



into how to configure and tune different recommender algorithms, with the particular

goal of developing systematic strategies for recommender parameter tuning that can

someday be automated. Engineering a recommender is not just a matter of picking the

right algorithm family (or families); there are many configuration points and design

decisions to be made for any individual algorithm. This chapter — and future work

like it — helps reduce the search space the recommender engineer (or future scientist)

must consider.

• Chapter 6 explores whether and when different algorithms make different mistakes.

This provides further evidence for the existence of interesting differences between

algorithms that affect their suitability for different users, items, or applications, and

provides some insight into where those differences might be.

• Chapter 7 presents a user study we ran to identify differences that users perceive

between the recommendations produced by different commonly-used recommender

algorithms. This work makes progress on identifying algorithm differences that mat-

ter to user needs, and does so in a way that extracts particular relationships between

algorithms, properties, and user satisfaction that can be validated in further studies

on additional domains and applications. Extracting such relationships is important to

enable future research to establish more easily which results are general and which

are domain-specific behaviors.

• Finally, chapter 8 summarizes our findings and maps out some future work.

This work advances the state of recommender research and provides a foundation for

extensive further research on how to best meet particular user needs with recommendation.
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Chapter 2

Background and Vision

R  [Ric+10; ERK10] are computer-based tools for suggesting items

to users. They often have some form of personalization, attempting to find items that the

particular user will like; a recommender may operate in a persistent or even mixed-initiative

[Hor99] fashion, suggesting items to the user as they interact with the service in which the

recommender is embedded, or with more explicit input, such as recommending items to go

with a shopping cart or personalizing search results.1

Information retrieval and recommender systems are closely related, sharing many algo-

rithmic and evaluation methods [Sar+02; Hof04; Bel12]. Modern search services are also

being increasingly personalized, bringing the fields even closer together. Daniel Tunkelang

once quipped that ‘[recommender systems are] just search with a null query’2.

The idea of using computers to recommend items that particular users may enjoy has

been around for many years; very early work by Rich [Ric79] provided book recommenda-

tions to library patrons over a remote computer terminal. Their modern form was first intro-

duced in the early 1990s with collaborative filtering; GroupLens [Res+94], Ringo [SM95],

and BellCore [Hil+95] mined the preferences of a large group of users to generate rec-

ommendations. Recommender systems have had significant commercial impact [SKR01],
1Portions of this work have been published in [ERK10] and [Eks14].
2@dtunkelang on Twitter: ‘@alansaid @xamat @mitultiwari I’m not really a #recsys guy – am more of

a search guy. Though #recsys is just search with a null query. :-)’ (https://twitter.com/dtunkelang/status/
389438505270521856)
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playing an important role in both late-90’s dot-com boom and the current generation of on-

line services. The have also been a subject of continual research interest for two decades,

and the subject of a dedicated conference (ACM Recommender Systems) since 2007.

2.1 Recommender Algorithms

One of the foundational approaches to recommendation is collaborative filtering: using the

preferences of other users to determine what should be recommended to the active user.

This takes several forms:

• User-based collaborative filtering [Res+94; Her+99] computes recommendations for

a user by finding other users with similar preferences and recommending the things

they like.

• Item-based collaborative filtering [Sar+01; LSY03; DK04] derives a notion of item

similarity from user rating or purchase behavior and recommends items similar to

those the user has already said they like.

• Matrix factorization methods decompose the user × item matrix of preference data

into a more compact, denser representation that can be used to extrapolate the ex-

pected preference of items the user has not encountered. One of the most common of

these techniques is singular value decomposition [Dee+90; Sar+02]; gradient descent

has proven to be an effective way of factorizing the matrix in a manner that is compu-

tationally efficient and useful for recommendation but does not preserve all the math-

ematical properties of a proper singular value decomposition [Fun06; Pat07]. Other

techniques based on matrix decomposition have included factor analysis [Can02] and

eigenvalue decomposition [Gol+01].
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• Probabilistic methods interpret the rating data in a probabilistic fashion. Many of

these methods are also matrix factorization methods, such as probabilistic latent se-

mantic indexing [Hof04; JZM04], probabilistic matrix factorization [SM08], and la-

tent Dirichlet allocation [BNJ03].

In addition to collaborative filtering, recommender systems have been built on many

other ideas as well. Content-based filtering uses the content and metadata of items to pro-

vide recommendations [BS97; MR00; SVR09]. This has the advantage of not requiring an

extensive set of user behavior in order to do recommendation, but can only capture aspects

of user preference that can be explained using the available item information. Recommen-

dation can also be viewed as an information retrieval [Bel12] or machine learning problem;

many standard machine learning techniques for classification and ranking have been ap-

plied to recommendation, including Bayesian networks [CG99; ZZ06], Markov decision

processes [SHB05], and neural networks [SMH07].

Hybrid recommender systems [Bur02] combine two or more different recommender

algorithms to create a composite. In some applications, hybrids of various types have been

found to outperform individual algorithms [Tor+04]. Hybrids can be particularly beneficial

when the algorithms involved cover different use cases or different aspects of the data set.

For example, item-item collaborative filtering suffers when no one has rated an item yet,

but content-based approaches do not. A hybrid recommender could use description text

similarity to match the new item with existing items based on metadata, allowing it to be

recommended anyway, and increase the influence of collaborative filtering as users rate the

item; similarly, users can be defined by the content of the items they like as well as the items

themselves. Fab used such an approach, matching items against both the content of items

liked by the user and the content of items liked by similar users [BS97].
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Burke [Bur02] provides a thorough analysis of hybrid recommender systems, grouping

them into seven classes:

• Weighted recommenders take the scores produced by several recommenders and com-

bine them to generate a recommendation list (or prediction) for the user.

• Switching recommenders switch between different algorithms and use the algorithm

expected to have the best result in a particular context.

• Mixed recommenders present the results of several recommenders together. This is

similar to weighting, but the results are not necessarily combined into a single list.

• Feature-combining recommenders use multiple recommendation data sources as in-

puts to a single meta-recommender algorithm.

• Cascading recommenders chain the output of one algorithm into the input of another.

• Feature-augmenting recommenders use the output of one algorithm as one of the

input features for another.

• Meta-level recommenders train a model using one algorithm and use that model as

input to another algorithm.

Hybrid recommenders proved to be quite powerful in the Netflix Prize [BL07]; the win-

ning entry was a hybrid of some 100 separate algorithms. Hybrids can often squeeze extra

accuracy out of the available data for recommendation (sometimes at considerable compu-

tational cost [Ama12]). They are also useful to adapt a system to the needs of different users

or different items.
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Hybrid-like characteristics are not only brought about by combining individual algo-

rithms in weighting schemes; there are many algorithms that can be understood as feature-

combining seeing active use and research. Some of them integrate feature-based with

collaborative filtering data in a single learning model, often a matrix factorization model

[SB10; Che+12].

2.2 Evaluating Recommender Systems

With many different approaches to recommendation, and different domains and tasks to

which they can be applied, it is necessary to have some means of evaluating how good

a recommender system is at doing its job. The goal of an evaluation is to measure the

recommender’s ability to meet its core objectives: meet users’ information needs, increase

lifetime customer value for a service’s customer relationships, etc. However, it can be costly

to try algorithms on real sets of users and measure the effects. Further, measuring some

desired effects may be intractable or impossible, resulting in the need for plausible proxies.

2.2.1 Offline Evaluation

Offline algorithmic evaluations [BHK98; Her+04; GS09] have long played a key role in

recommender systems research. They are often used on their own — though not without

serious limitations — to assess the efficacy of a recommender system. It is also common to

use offline analysis to pre-test algorithms in order to understand their behavior prior to user

testing as well as to select a small set of candidates for user testing from a larger pool of

potential designs. Since user trials can be expensive to conduct, it is useful to have methods

for determining what algorithms are expected to perform the best before involving users.

The basic structure for offline evaluation is based on the train-test and cross-validation
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techniques common in machine learning. It starts with a data set, typically consisting of a

collection of user ratings or histories and possibly containing additional information about

users and/or items. The users in this data set are then split into two groups: the training

set and the test set. A recommender model is built against the training set. The users in

the test set are then considered in turn, and have their ratings or purchases split into two

parts, the query set and the target set. The recommender is given the query set as a user

history and asked to recommend items or to predict ratings for the items in the target set;

it is then evaluated on how well its recommendations or predictions match with those held

out in the query, or on how effective it is at retrieving items in the target set. This whole

process is frequently repeated as in 𝑘-fold cross-validation by splitting the users into 𝑘 equal

sets and using each set in turn as the test set with the union of all other sets as the training

set. The results from each run can then be aggregated to assess the recommender’s overall

performance, mitigating the effects of test set variation [GS09]. Some experiments use

variants of this model, such as simply splitting the rating tuples into 𝑘 partitions for cross-

validation.

The basic offline evaluation model can be refined to take advantage of the temporal

aspects of timestamped data sets to provide more realistic offline simulations of user inter-

action with the service. The simplest of these is to use time rather than random sampling

to determine which ratings to hold out from a test user’s profile [GS09]; this captures any

information latent in the order in which the user provided ratings. Further realism can be

obtained by to restrict the training phase as well, so that in predicting a rating or making a

recommendation at time 𝑡, the recommendation algorithm is only allowed to consider those

ratings which happened prior to 𝑡 [GS09; LHC09; Bur10]. This comes at additional com-

putational expense, as any applicable model must be continually updated or re-trained as

the evaluation works its way through the data set, but allows greater insight into how the

12



2.2. Evaluating Recommender Systems

algorithm performs over time.

Offline evaluations measure the performance of the recommender with a variety of met-

rics. Prediction accuracy metrics such as mean absolute error (MAE) [SM95; BHK98;

Her+99; Pen+00; HKR02] and root mean squared error (RMSE) [Her+04; BL07] measure

the accuracy with which the recommender can predict the user’s ratings of the test items.

This is applicable to domains where users are providing explicit ratings, as opposed to im-

plicit preference data through their purchasing or reading behavior, and attempts to estimate

how good the recommender is at modelling and predicting the user’s preferences.

Top-𝑁 metrics measure the quality of top-𝑁 recommendation lists produced by the

recommender. Many recommenders are used to produce lists of suggested items to show

to a user, and top-𝑁 metrics attempt to measure the recommender’s suitability for this

task. These metrics are often borrowed from machine learning and information retrieval.

Some, such as precision/recall [Sal92], 𝐹1 [Rij79; YL99], and ROC curves and A-measures

[Swe63], attempt to measure how good the recommender is at distinguishing relevant items

from irrelevant ones. Others, such as mean reciprocal rank (MRR), consider how good the

recommender is at putting at least one relevant item near the top of the list. Discounted cu-

mulative gain [JK02] and related measures [BHK98] measure how good the recommender

is at putting good items at the top and bad items lower, giving lower weight to position

further down the list as users are less likely to even consider the 8th recommendation than

the 1st.

Top-𝑁 metrics as typically deployed have a significant limitation. They require the abil-

ity to know, for each recommended item, whether it is good or bad. In supervised learning

situations, or in certain information retrieval experiments such as classical TREC competi-

tions, this is not a problem: for a given query, every document has an expert judgement of

its relevance. If the retrieval engine suggests a ‘not relevant’ document, that can be counted
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against it.

When evaluating a recommender system, however, we do not often have a fully-coded

corpus. If a user did not rate an item, or did not purchase it, we do not know whether they

would like it or not. It’s more likely that they would dislike it [MZ09], but the premise of

recommendation is that such dislike is not a given: there are items the user does not know

about but would like. If a recommender finds an item 𝐴 which the user did not purchase in

the available data and suggests it first, followed by an item 𝐵 which the user did purchase,

there are two possibilities. The first is that the user would not like 𝐴, and therefore the rec-

ommendation is bad. Top-𝑁 metrics typically assume this, and ‘punish’ the recommender

for such a recommendation (MRR, for example, measures the rank of the first good item;

this increases that rank, decreasing MRR from 1 to 0.5). However, it is also possible that

the user would, in fact, like 𝐴, possibly in lieu of 𝐵. The fact that they did not know about

it might even make it a much better recommendation; it is possible they would have found

𝐵 without the recommender. Therefore, such evaluations can very easily punish the rec-

ommender for doing its job. Bellogin [Bel12] provides more detail on the problems and

potential remedies for such evaluation structures.

2.2.2 User-Based Evaluation

While offline evaluations allow us to easily and cheaply examine the behavior of recom-

mender algorithms, the true test of a recommender comes when it meets its users. To be

useful, a recommender needs to satisfy its users’ needs and/or accomplish its business objec-

tives (which ideally flow from satisfying the needs of the business’s customers). Therefore,

it is necessary to test recommenders with real users.

These kinds of tests take two major forms. Field trials examine the behavior of users as

they are ordinarily using the recommender. A/B testing is one kind of field trial used heavily
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in industrial applications: give two sets of users of a system different recommenders (or

some other treatment, such as a different purchasing interface) and compare them on some

key metric (such as the rate at which they like songs that have been played in an Internet

radio application).

Other experiments are directly visible to their users, and often involve surveys, prototype

interfaces, and other more laboratory-style apparatuses. Such user studies are widely used

to evaluate the usefulness of particular recommender applications [Mcn+02; Eks+10] and

to answer scientific questions about user interaction with recommender systems [Bol+10].

The design and execution of user studies has improved over time; historically, many studies

involved relatively simple user questionnaires (a practice that continues today), but recent

years have seen increasing development and use of more sophisticated study designs and

analysis techniques [Kni+12].

One such technique, structural equation modeling [Kli98; Kni+12], is a powerful tool

for investigating the perceived factors that influence user satisfaction and choices. It allows

us to not only measure what algorithms or items the user ultimately prefers, but also assess

how specific aspects of the recommendations (such as novelty and diversity) influence their

preferences and behavior. A user may prefer algorithm A over B because it is diverse and

therefore more appropriate to meeting their needs, and SEM allows us to quantify and test

these kinds of relationships.

Field trials and user studies allow us to get at different aspects of the recommender’s

performance. Field trials are often more realistic, as the user is interacting with the recom-

mender in the course of their ordinary work. User studies are often more contrived, although

user study techniques can be deployed in a non-contrived fashion, such as by asking users of

a live system to take a short survey. Field trials measure the recommender by what users do

in response to it: do they listen to more music, buy more things, renew their subscription,
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etc. These measurements must be carefully designed, to make sure that they measure things

that are useful for assessing the long-term usefulness or business value of a recommender,

but they do not have the noise of users not really understanding how they think, or saying

they would do one thing when they would really do another. They are limited, however, in

their ability to get at why users are making particular decisions, to explore the psychological

processes involved in a user’s interaction with the system. Well-designed user studies can

get at these more subjective aspects of the user’s experience, measuring the user’s satisfac-

tion and user-perceptible properties of the recommender. These subjective measurements

can also be correlated with objective measurements of recommender behavior and user ac-

tivity for a more complete view of the human-recommender interaction [Kni+12].

2.3 Differences in Recommenders

Much research on recommender systems has focused primarily on their accuracy [Her+04].

However, researchers have long recognized that accuracy is not the sole property by which a

recommender system should be evaluated. McNee, Riedl, and Konstan [MRK06a; MRK06b]

argued for a variety of additional considerations related to the user experience of recom-

mender systems. Further, different algorithms may exhibit different user-perceptible be-

haviors, even if they perform similarly on accuracy metrics, and that these behaviors affect

their suitability for different recommendation tasks [Mcn+02; Tor+04; MKK06].

Several non-accuracy factors have been of recurring and increasing interest in recom-

mender systems research. Diversity has been widely considered [Zie+05; VC11; Zho+10;

WGK14], measuring the diversity of recommendations by various means and attempting

to provide users with more diverse sets of items from which to chose. In addition to pro-

viding a more satisfactory set of recommendations, it can also make the decision process
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itself easier and more pleasant for users [Bol+10]. Diversity has long been recognized as

an important factor in the results of information retrieval systems generally; Clarke et al.

[Cla+08] present relatively recent work on evaluating IR systems for novelty and diversity,

but diversity (at least in terms of the likely relevance) was also considered by Carbonell and

Goldstein [CG98] and much earlier by Goffman [Gof64].

There has also been significant work on the novelty of recommendations [ZH08; VC11],

trying to provide users with recommendations that they are unlikely to have heard of by other

means. This has also been cast as serendipity [GDJ10]: the ‘happy accident’, an item the

user did not expect but that turned out to be good. Increasing the number of serendipitous

encounters is indeed the purpose of recommender systems, particularly in entertainment

domains: if the user already knows about, or would discover through natural means, all the

movies they would like, they would have no need for a recommender.

Another consideration is the stability of a recommender, the degree to which its rec-

ommendations change or remain static over time [Bur02] or its degree of self-consistency

[AZ12]. A stable recommender system has a certain degree of predictability, and may be

more robust to attack [LR04], but may also be boring: if it takes a lot for recommendations

to change, repeat users might not be satisfied.

While it is well-established that there are factors beyond accuracy that affect a recom-

mender’s suitability for different tasks, and that different algorithms exhibit different char-

acteristics and are therefore more or less suitable in different situations, there has been

inadequate systematic exploration of what these differences are, why they matter, and how

we can harness them to build better recommendation solutions. Our empirical work there-

fore focuses on understanding how recommenders differ, attempting to identify differences

between recommender algorithms that are interesting and useful for building better, more

targeted solutions, and are of scientific interest to understanding how humans interact with
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personalized information retrieval and filtering systems.

2.4 Reproducible and Reusable Research

Reproducibility is one of the cornerstones of the scientific enterprise. The ability to re-

peat experiments and obtain comparable results is critical to ensuring that our results are

reliable, generalizable, and predictive. Reproducibility doesn’t come for free, however: re-

producible research must be carefully and thoroughly documented and appropriate data,

materials, software, and equipment must be available to scientists who may wish to repro-

duce results. Scientists in a wide variety of disciplines have discussed the necessity and

challenges of reproducible research, particularly in the face of the increasing reliance on

computation in many disciplines [GL04; PDZ06; Lai+07; Don+09; VKV09; Pen11].

Lougee-Heimer [Lou03] argues for open-source distribution of software embodying re-

search results as a tool to promote reproducibility in the field of operations research. We

think his arguments are equally applicable in other research domains where computational

techniques are an important research output, including recommender systems. Publishing

the code used in a research publication for others to read and execute is the surest way to

ensure that they can faithfully reproduce the results, either to validate them or as a starting

point for further investigation.

Recommender systems research is, in our experience, often hard to reproduce [Eks+11;

Eks14]. There are several causes and consequences of this difficulty:

• It is difficult to understand existing recommender algorithms in enough detail to im-

plement them. Many algorithms are published in the research literature, but the level

of detail they provide varies greatly. This makes it difficult in many cases to under-
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stand exactly what the original authors did, particularly in edge cases, in enough detail

to re-implement the algorithm and make it useful.

• It is difficult to reproduce and compare research results. In addition to the variation in

their descriptions of algorithms, recommender research papers do not always specify

their evaluation protocols in enough detail to reproduce the exact measurement.

• Research papers are inconsistent choice of evaluation setups and metrics. This seems

to be caused by several factors, including a lack of consensus on best practices in

the details of recommender evaluation and papers that do not specify enough details,

leaving later researchers to guess.

• Because of the difficulty of understanding algorithms, algorithm authors do not al-

ways compare against high-quality implementations of prior work. For example, the

baseline algorithm may lack state-of-the-art optimizations and data normalization,

resulting in an evaluation that overestimates the improvement made by the proposed

new approach.

Fortunately, this problem has been getting attention: 2013 saw the introduction of a

RepSys workshop at the ACM Conference on Recommender Systems, discussing the chal-

lenges of recommender research reproducibility and potential solutions. There are also a

number of open-source packages providing implementations of common recommendation

algorithms, including SUGGEST3, MultiLens, COFI4, COFE, Apache Mahout5, MyMedi-
3http://glaros.dtc.umn.edu/gkhome/suggest/overview/
4http://savannah.nongnu.org/projects/cofi/
5http://mahout.apache.org
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aLite6, EasyRec7, jCOLIBRI8, myCBR9, PredictionIO10, RecDB11, and our own LensKit

(chapter 3).

Closely related to reproducibility is the usability of research results. In a field where

many research contributions are new methods for recommendation, can a practitioner take

the results of a paper and incorporate them into their system? How difficult is it for a per-

sonalization engineer at a web-based business to try out the latest recommendation research

in their service’s discovery tools? If it is difficult to repeat and reproduce what was done in

a piece of research, it is also difficult to make use of that research in practice.

Other research communities have benefited greatly from open platforms providing easy

access to the state of the art. Lemur12 and Lucene13 provide platforms for information

retrieval research. They also make state-of-the-art techniques available to researchers and

practitioners in other domains who need IR routines as a component of their work. Weka

[Hal+09] similarly provides a common platform and algorithms for machine learning and

data mining. These platforms have proven to be valuable contributions both within their

research communities and to computer science more broadly. We hope that high-quality,

accessible toolkits will have similar impact for recommender systems research; so far, things

are promising.
6http://www.ismll.uni-hildesheim.de/mymedialite/
7http://www.easyrec.org/
8http://gaia.fdi.ucm.es/projects/jcolibri/
9http://mycbr-project.net/

10http://prediction.io/
11http://www-users.cs.umn.edu/~sarwat/RecDB/
12http://www.lemurproject.org
13http://lucene.apache.org
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2.5 Engineering Recommenders

Our vision of recommender engineering is heavily influenced by the principles of human-

recommender interaction put forward by McNee, Riedl, and Konstan [MRK06b]. HRI de-

velops and evaluates a recommender application by analyzing the application requirements

in terms of the recommendation dialogue, recommender personality, and user task. We

extend this model by explicitly acknowledging the recommendation domain as a distinct

component for analysis — different algorithms may be more suitable to meeting the needs

of the same type of task in different domains — and take significant, concrete steps to bring

the analytic design of recommender systems closer to reality.

At the same time, McNee, Riedl, and Konstan [MRK06a] wrote of the particular prob-

lems caused by focusing myopically on recommender accuracy and ignoring other needs

and criteria such as diversity and serendipity. This work has had significant impact, with a

lot of research looking at non-accuracy aspects of recommender systems. There does not

seem to be as much work to date advancing the broader vision of human-recommender in-

teraction or, as we have framed it, recommender engineering. The work of Knijnenburg

et al. [Kni+12] contains several significant advancements in the science needed to make

HRI and recommender engineering possible; in this thesis, we focus on the tools and exper-

iments for understanding the algorithms themselves. Algorithms and user-centered evalu-

ation converge in the work we present in chapter 7, and further experiments and synthesis

will increasingly fill in the knowledge gaps that prevent recommender systems from being

directly engineered and built.
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Tools for Recommender Research

LK1 is an open-source software package for building, researching, and learning about

recommender systems. It is intended to support reproducible research on recommender

systems and provide a flexible, robust platform for experimenting with different recom-

mendation techniques in a variety of research settings.2

In support of these goals, LensKit provides several key facilities:

• Common APIs for recommendation tasks, such as recommend and predict, allow

researchers and developers to build applications and experiments in an algorithm-

agnostic manner.

• Implementations of standard algorithms for recommendation and rating predic-

tion, making it easy to incorporate state-of-the-art recommendation techniques into

applications or research.

• An evaluation toolkit to measure recommender performance on common data sets

with a variety of metrics.

• Extensive support code to allow developers to build new algorithms, evaluation

methodologies, and other extensions with a minimum of new work. In particular,
1http://lenskit.org
2This chapter is adapted and updated from material previously published by Ekstrand et al. [Eks+11].

Several members of GroupLens have contributed to this work, most significantly Michael Ludwig, Jack Kolb,
and John Riedl.
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// Load a recommender configuration (item-item CF)

LenskitConfiguration config = ConfigHelpers.load("item-item.groovy");

// Set up a data source

config.bind(EventDAO.class)

.to(SimpleFileRatingDAO.create(new File("ratings.csv"), "\t"));

// Create the recommender

Recommender rec = LenskitRecommender.build(config);

ItemRecommender itemRec = rec.getItemRecommender();

// generate 10 recommendations for user 42

List<ScoredId> recommendations = irec.recommend(42, 10);

Listing 3.1: Example code to create and use a recommender.

LensKit provides infrastructure to help developers write algorithms that integrate eas-

ily into both offline evaluation harnesses and live applications using many different

types of data sources, and to make these algorithms extensively configurable.

We started LensKit in 2010 and published it in 2011 [Eks+11]. As of 2014, it consists of

44K lines of code, primarily in Java, and contains code from 12 contributors3. We develop

LensKit in public, using GitHub4 for source code management and bug tracking and Maven

Central for distributing releases and managing dependencies.

The remainder of this chapter describes how LensKit can be used by researchers and

developers, and the design and implementation that enable those uses.

3.1 Introduction to LensKit

Listing 3.1 demonstrates the basic steps that a program needs to perform in order to use

LensKit to generate recommendations:
3Statistics from Ohloh (https://www.ohloh.net/p/lenskit).
4https://github.com/lenskit/lenskit
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1. Configure the recommender algorithm. This is done here by loading the item-item.groovy

configuration file, which configures an item-item collaborative filtering recommender.

The LensKit documentation contains example configuration files for several different

algorithms.

2. Set up a data source; in this case, tab-separated rating data from ratings.tsv.

3. Construct the LensKit recommender, represented in the Recommender object. This

provides access to all of the facilities provided by the configured recommender.

4. Get the ItemRecommender component, responsible for producing recommendation

lists for users, and use it to compute 10 recommendations for user 42.

Using and integrating LensKit revolves around a recommender. A LensKit recom-

mender comprises a set of interfaces providing recommendation, rating prediction, and

other recommender-related services using one or more recommender algorithms connected

to a data source. These services are exposed via individual interfaces — ItemRecom-

mender, RatingPredictor, ItemScorer, etc. — reflecting different capabilities of the rec-

ommender.

Experimenters wanting to use LensKit to compare a set of algorithms can write an eval-

uation script, specifying three primary things:

• The data set(s) to use

• The algorithms to test

• The metrics to use

Listing 3.2 shows simple evaluation script that will perform a cross-validation experi-

ment on three algorithms. Experiments can be substantially more sophisticated — recording
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trainTest {

dataset crossfold {

source csvfile("ratings.csv") {

domain minimum: 1.0, maximum: 5.0, precision: 1.0

}

}

metric CoveragePredictMetric

metric RMSEPredictMetric

metric NDCGPredictMetric

algorithm 'pers-mean.groovy', name: 'PersMean'

algorithm 'item-item.groovy', name: 'ItemItem'

algorithm 'user-user.groovy', name: 'UserUser'

}

Listing 3.2: Example evaluation experiment.

extensive metrics over recommender models and outputs, testing procedurally generated al-

gorithm variants, etc. — but at their core, they are measurements of algorithms over data

sets. The evaluator produces its output in CSV files so it can be analyzed and charted in

Excel, R, or whatever the user wishes.

3.2 Design of LensKit

We want LensKit to be useful to developers and researchers, enabling them to easily build

and research recommender systems. More specifically, we have designed LensKit to be

useful for building production-quality recommender systems in small- to medium-scale en-

vironments and to support many forms of recommender research, including research on

algorithms, evaluation techniques, and user experience.

We also want LensKit to be useful in educational environments. As students learn how
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to build and integrate recommender systems, it can be beneficial for them to use and study

existing implementations and not just implement simplified versions of the algorithms. We

have used it ourselves to teach a MOOC and graduate course on recommender systems

[Kon+14]. However, the design and implementation been driven primarily by research and

system-building considerations, and we have significant work to do in building documen-

tation, simplified APIs, and other entry points to make it more accessible to students.

In order to turn LensKit from a concept into working code, we have needed to turn

the overall project goals of supporting research and development into software architecture

and finally implementations. LensKit’s design and implementation are driven by a few key

design principles, many of which are applications of good general software engineering

practice:

Build algorithms from loosely-coupled components.

Herlocker, Konstan, and Riedl [HKR02] separates the user-user collaborative filter-

ing algorithm into several conceptual pieces and considers the potential design and

implementation decisions for each separately. We extend this principle into all our

algorithm implementations: a typical recommender is composed of a dozen or more

distinct components.

This decoupling achieves several important goals. First, it is good software engineer-

ing practice to separate complicated logic into distinct components that communicate

via small, well-defined interfaces in order to improve maintainability, readability, and

testability. An entire collaborative filtering algorithm is difficult to extensively test;

item similarity functions and mean-centering normalizers can be tested with relative

ease, increasing our confidence in the final system.

Second, it provides extension and configuration points to customize algorithms and
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experiment with variants. Breaking the algorithm into small components is a prereq-

uisite for allowing those components to be individually replaced and reconfigured.

For example, Sarwar et al. [Sar+01] tested different item similarity functions for item-

based collaborative filtering; by implementing item similarity as a distinct component

in LensKit, we can conduct similar research by providing alternate implementations

of the ItemSimilarity interface.

Third, it allows components to be re-used between algorithms. For instance, many

algorithms benefit from normalizing user rating data prior to performing more sophis-

ticated computations. Having distinct UserVectorNormalizer components allows us

to reuse the same data normalization code across multiple algorithms.

We want researchers to be able to experiment with new algorithms or variances, eval-

uation metrics, etc., with a minimum of new code. Ideally, they should only need

to write the code necessary to implement the particular idea they wish to try, and be

able to reuse LensKit’s existing code for everything else. Composing recommenders

from small, replaceable building blocks is how we attempt to achieve this goal.

Be correct and safe, then efficient.

When designing components of LensKit, we naturally strive first for correct code.

We also seek to design components so that the natural way to use them is likely to

be correct, and so that it is difficult to violate their invariants. One result of this

is extensive use of immutable objects, reducing the number of ways in which one

component can break another.

To be useful, however, LensKit must also be efficient, and we have continually looked

for ways to improve the efficiency of our data structures and algorithms. We also
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occasionally provide means, such as fast iteration (section 3.6), for two components

to negotiate a relaxation of certain assumptions in order to improve efficiency.

Use composition and the Strategy pattern, not inheritance.

Modern object-oriented programming wisdom often recommends against using in-

heritance as a primary means of extending and configuration code. Instead, extension

points should be exposed as separate components defined by interfaces. The Strat-

egy pattern [Gam+95b] is the foundation for this type of software design; under this

scheme, if there are different ways a class could perform some portion of its responsi-

bilities, it depends on another component with an interface that encapsulates just the

reconfigurable computation instead of using virtual methods that a subclass might

override. There are many benefits to this approach, two of which have significant

impact on LensKit:

• Component implementations can be refactored without breaking code that con-

figures them, so long as the strategy interface is preserved.

• It is easier to support multiple configuration points. If we had a UserUserCF

class that had virtual methods for normalizing data and comparing users, con-

figuring it would require subclassing and overriding both methods, either im-

plementing the relevant computations or delegating to some other code that

does. Composition and the Strategy pattern mean that the data normalization

and user comparison algorithms can be configured by giving the user-user col-

laborative filter particular UserVectorNormalizer and UserSimilarity implemen-

tations, which are also provided by LensKit.

Be configurable, but have sensible defaults.
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We want LensKit algorithms — and other aspects of LensKit where appropriate —

to be extensively configurable, but we do not want users to have to configure (and

therefore understand) every detail in order to start using LensKit. Therefore, we have

broken each algorithm into many individually-configurable components (as described

earlier), and continue to refactor the algorithm implementations to support more di-

verse configurations, but provide default component implementations and parameter

values wherever sensible.

Wherever there is a sensible default, and subject to compatibility concerns, we want

LensKit’s default, out-of-the-box behavior to be current best practices. This is par-

ticularly true for the evaluator, where we want the result of saying ‘evaluate these

algorithms’ to be consistent with commonly-accepted evaluation practice. LensKit’s

defaults will be evolving — with appropriate versioning and compatibility notices

— as the research community comes to greater consensus on how to best conduct

evaluations.

Minimize assumptions.

We attempt to make as few assumptions as possible about the kinds of data users will

want to use LensKit with, the types of algorithms they will implement, etc. This is

particularly true for low-level portions of the system, such as the data access layer;

relaxing the assumptions of other aspects, such as the evaluator and various algorithm

implementations, is an ongoing project.

LensKit’s design has been heavily influenced by the principles in Effective Java [Blo08]

in pursuing safe, flexible, maintainable code.

We chose Java for the implementation language and platform for LensKit for two pri-

mary reasons. First, we wanted to write it in a language that would be accessible to a wide
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range programmers and researchers, particularly students; Java is widely taught and has

a high-quality implementation for all common operating systems. Second, we needed a

platform that provides good performance. With some care in algorithm and data structure

design and coding practices, the Java virtual machine provides excellent runtime perfor-

mance.

3.3 Code Organization

Data Structures

Core

Grapht

API

Evaluator

Predictors

k-NN

SVD

Slope1

CLI

Figure 3.1: LensKit modules and their relationships

The LensKit code is divided into several modules, reflecting its design to provide lightweight

common APIs and a rich support infrastructure for its algorithms, evaluators, and tools.

Figure 3.1 shows the dependency relationships between these modules.

API The API module contains the interfaces comprising LensKit’s recommendation API.

It contains interfaces for generating recommendation lists, estimating preference, and

other high-level recommendation tasks. These interfaces are independent of the rest
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of LensKit (except the data structures library), so that code can be written against

them and used with either LensKit’s implementations or shims to expose the same

interface from another toolkit such as Apache Mahout. Section 3.4 describes these

APIs in more detail.

Data Structures The data structures module contains several core data structures and data-

related utilities used by the reset of LensKit. Section 3.6 describes these data struc-

tures.

Core The core module contains the bulk of LensKit’s except for the evaluator and algorithm

implementations. It provides the support infrastructure for accessing and managing

data and configuring recommender implementations, as well as baseline and default

recommender components and utility classes used by the rest of LensKit.

Evaluator This module contains the LensKit evaluation tools, providing support for offline

estimates of algorithm performance using widely used metrics and evaluation setups.

Section 3.8 describes the evaluator.

Predictors More sophisticated rating prediction support. This includes OrdRec [KS11]

and adapters for additional rating prediction.

k-NN Nearest-neighbor collaborative filtering, both user-based [Res+94] and item-based

[Sar+01] algorithms.

SVD Collaborative filtering by matrix factorization; currently, the only algorithm imple-

mented is FunkSVD [Fun06; Pat07].

Slope1 Slope One predictors for collaborative filtering [LM05].
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..common logic.

ItemScorer

.

ItemRecommender

.RatingPredictor .

GlobalItemScorer

.

GlobalItemRecommender

Figure 3.2: Diagram of LensKit API components

Grapht Grapht, described in more detail in chapter 4, is not technically a part of LensKit.

It is the dependency injection library used by the LensKit core to configure and in-

stantiate particular recommender algorithms.

CLI The command line interface provides tools for running LensKit evaluations, inspect-

ing algorithm configurations, manipulating data files, etc.

3.4 Recommender APIs

The public API defined by LensKit is accessed via the Recommender interface introduced

in section 3.1. Its primary implementation, LenskitRecommender, encapsulates the com-

ponents that make up a particular recommender and makes them available to client appli-

cations. A Recommender does not define any particularly interesting behavior on its own;

all it does is provide access to the implementations of interfaces for particular recommen-

dation tasks. LensKit does not provide any other implementations of Recommender; it

is separated from its implementation and included in the public API to provide a place to

implement shims around other recommender implementations, making it possible to adapt

other implementations such as Mahout to make be usable in LensKit-based applications.
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Figure 3.2 shows the components that make up LensKit’s public API, and how they

typically interact. The central component of most LensKit recommenders is an implemen-

tation of the ItemScorer interface. The various recommendation techniques implemented by

LensKit differ primarily in the item scorer they implement; in almost all cases, the algorithm

to be used is configured by selecting an item scorer implementation to use (in listing 3.1,

this is done inside item-item.groovy configuration file).

An item scorer is a generalization of the predict capability, computing general user-

personalized scores for items. No assumptions are made or implied about what the scores

mean, except that higher scores should indicate ‘better’ items, for some definition of ‘better’

that makes sense in the context of the application and algorithm. When operating on rating

data, many item scorer implementations compute scores by predicting user ratings; this

generalization to scores, however, allows components to operate with non-rating-based (e.g.

purchase or click count data) without artificial meanings. Implementing a new algorithm for

LensKit is usually done by creating a new item scorer implementation, as most algorithms

are mechanisms for producing personalized scores.

Most applications embedding LensKit will not use the item scorer directly, however.

Instead, they will use the RatingPredictor and ItemRecommender interfaces, providing sup-

port for the traditional predict and recommend tasks respectively.

The rating predictor and item scorer interfaces are identical (with the methods renamed

from score to predict), but the contract of RatingPredictor carries the additional guarantee

that its scores are interpretable as predicted ratings. Separating the item scorer and rating

predictor interfaces — and the components implementing them — provides three major

advantages. First, it frees up individual scorer components from dealing with some of the

details of rating prediction, such as clamping ratings to the range of valid ratings and pos-

sibly quantizing them, keeping the code conceptually simple. Second, it consolidates code
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for sanitizing scores to be interpretable as ratings in one place (the default RatingPredictor

implementation), reducing code duplication. Third, it allows alternative strategies for map-

ping scores to predicted ratings, such as OrdRec [KS11], to be easily swapped in and used

on top of LensKit’s existing item scoring capabilities.

The item recommender interface provides lists of recommendations for a particular user

in the system. The application using it provides a user ID, the desired number of recom-

mendations 𝑛, and optionally an candidate set 𝐶 and/or an exclude set 𝐸 of item IDs to con-

strain the recommendations. The recommender will return up to 𝑛 recommendations from

𝐶\𝐸. If unspecified, 𝐶 defaults to all recommendable items and 𝐸 defaults to the items the

user has rated or purchased (although individual item recommender implementations may

change these defaults). These sets allow the application to use LensKit in situations such as

recommending from among the items in one particular category or matching some search

query.

LensKit also exposes an interface GlobalItemRecommender (and an associated Glob-

alItemScorer for ‘global’ (non-personalized) recommendation that does not take the user

into account, but operates with respect to zero or more items. Applications can use it to

implement a ‘similar items’ feature or to provide recommendations based on the contents

of a shopping basket.

Listing 3.3 lists the core methods exposed by several of the interfaces in the LensKit

API. Section 3.7 describes many of implementations LensKit provides of these interfaces.

3.5 Data Model

LensKit recommenders need a means of accessing and representing the data — ratings,

purchases, item metadata, etc. — from which they are to compute recommendations. To
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public interface ItemScorer {

/**

* Compute scores for several items for a user.

*/

SparseVector score(long user, Collection<Long> items);

}

public interface ItemRecommender {

/**

* Recommend up to `count' items for a user. Only items

* in `candidates' but not in `excludes' are considered.

*/

List<ScoredId> recommend(long user, int count,

Set<Long> candidates,

Set<Long> excludes);

}

public interface GlobalItemRecommender {

/**

* Recommend up to `count' items related to a selected

* set of items. Only items in `candidates' but not in

* `excludes' are considered.

*/

List<ScoredId> recommend(Set<Long> items, int count,

Set<Long> candidates,

Set<Long> excludes);

}

Listing 3.3: Simplified LensKit interfaces.

support this in a general fashion, extensible to many types of data, LensKit defines the

concepts of users, items, and events. This design is sufficiently flexible to allow LensKit to

work with explicit ratings,implicit preference extractable from behavioral data, and other

types of information in a unified fashion.

Users and items are represented by numeric identifiers (Java longs). LensKit makes no
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assumptions about the range or distribution of user and item identifiers, nor does it require

users and items to have disjoint sets of identifiers. The only constraint it places upon the

users and items in the data it interacts with is that they can be represented with numeric IDs.

An event is some type of interaction between a user and an item, optionally with a

timestamp. Each type of event is represented by a different Java interface extending Event.

Since ratings are such a common type of data for recommender input, we provide a Rating

event type that represents a user articulating a preference for an item.5 A rating can also

have a null preference, representing the user removing their rating for an item. Multiple

ratings can appear for the same user-item pair, as in the case of a system that keeps a user’s

rating history; in this case, the system must associate timestamps with rating events, so that

the most recent rating can be identified.

Recommender components access the user, item, and event data through data access

objects (DAOs). Applications embedding LensKit can implement the DAO interfaces in

terms of their underlying data store using whatever technology they wish — raw files, JDBC,

Hibernate, MongoDB, or any other data access technology. LensKit also provides basic

implementations of these interfaces that read from delimited text files or generic databases

via JDBC, and implement more sophisticated functionality by caching the events in in-

memory data structures.

The methods these interfaces define come in two flavors. Basic data access methods,

prefixed with get (such as getEventsForItem(long)), retrieve data and return it in a stan-

dard Java data structure such as a list (or a LensKit-specific extension of such a structure).

Streaming methods, prefixed with stream, return a cursor of items; cursors allow client code

to process objects (usually events) one at a time without reading them all into memory, and
5LensKit does not yet provide implementations of other event types, but it is one of our high-priority

tasks.
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release any underlying database or file resource once processing is completed or abandoned.

The standard LensKit DAO interfaces are:

EventDAO The base DAO interface, providing access to a stream of events. Its only meth-

ods are to stream all events in the database, optionally sorting them or filtering them

by type.

ItemEventDAO An interface providing access to events organized by item. With this inter-

face, a component can retrieve the events associated with a particular item, optionally

filtering them by type. It can also stream all events in the database grouped by item.

UserEventDAO Like ItemEventDAO, but organized by user.

ItemDAO An interface providing access to items. The base interface provides access to the

set of all item IDs in the system.

UserDAO An interface providing access to users. Like ItemDAO, it provides access to the

set of all user IDs in the system.

An application that augments LensKit with components needing additional information,

such as user or item metadata for a content-based recommender, will augment these inter-

faces with additional interfaces (possibly extending the LensKit-provided ones) to provide

access to any relevant data. We have done this ourselves when embedding LensKit in an ap-

plication or using it for an experiment; for example, in teaching our recommender systems

MOOC, we extended ItemDAO with methods to get the tags for a movie to allow students

to build a tag-based recommender in LensKit.

Early versions of LensKit had a single DataAccessObject interface that was handled

specially by the configuration infrastructure; it was possible to extend this interface to pro-
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vide extra data such as tags, but it was not very easy. Since LensKit 2.0, the data access

objects are just components like any others, and receive no special treatment.

3.6 Data Structures

LensKit implements several data structures and data-related utilities to support building and

working with recommenders.

There are many places where we need to be able to manipulate vectors of values asso-

ciated with users and items, such as a user rating vector containing the user’s current rating

for each item they have rated. To support these uses, LensKit provides a sparse vector type.

Sparse vectors are optimized maps from longs to doubles with efficient support for linear

algebra operations such as dot products, scaling, and addition. Initially, we tried using hash

maps for these vectors, but they performed poorly for common computations such as vector

cosines.

The SparseVector class uses parallel arrays of IDs and values, sorted by ID. This pro-

vides memory-efficient storage, efficient (𝑂(lg 𝑛)) lookup by key, and enables many two-

vector operations such as dot products to be performed in linear time by iterating over two

vectors in parallel. This class helps LensKit algorithm implementers write many types of

algorithms in a concise and efficient manner. Sparse vectors also provide type-safe im-

mutability with three classes: the abstract base class SparseVector provides the base imple-

mentation and read-only methods; ImmutableSparseVector extends it and guarantees that

the vector cannot be changed by any code; and MutableSparseVector extends SparseVec-

tor with mutation operations such as setting or adding individual keys or sets of keys from

another vector.

To maintain predictable performance, the sparse vectors do have one key limitation:
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when created, a sparse vector has a fixed key domain, the set of all keys that can possibly

be stored in it. Individual entries can be set or unset, but once a sparse vector (even an

immutable one) is created, no entry can be added whose key was not in the original key

domain. This means that sparse vectors never have to reallocate or rearrange memory:

getting or setting the value for a key is either 𝑂(lg 𝑛) or fails in all cases. Programmers

using sparse vectors must organize their code to work around this, setting up the list of keys

they need in advance In practice, most code we have written can easily know in advance the

set of user or item IDs that it will need to work with and allocate a vector without incurring

overhead in either run time or code bloat. For those cases where the IDs are discovered

on-the-fly, we use a more dynamic structure such as a hash map and convert it to a vector

when we are finished.

LensKit also provides additional data structures for associating lists of events with user

or item IDs, mapping long IDs to contiguous 0-based indexes (helping to store user or item

data in arrays), and associating scores with IDs either on their own or in lists (where the

sorted-by-key property of sparse vectors is undesired).

In addition to its own data structures, LensKit makes heavy use of fastutil6 and Google

Guava. The fastutil library provides primitive collections that are compatible with the Java

collections API, allowing LensKit to have lists, sets, and maps of unboxed longs and dou-

bles. We use these extensively throughout the LensKit code to reduce memory consumption

and allocation overhead, significant sources of slowdown in naïve Java code.

LensKit also borrows the fast iteration pattern from fastutil for its own data structures;

under fast iteration, an iterator can mutate and return the same object repeatedly rather

than returning a fresh object for each call to its next() method. For classes that present

flyweights over some internal storage (e.g. entry objects representing key-value pairs in a
6http://fastutil.dsi.unimi.it/
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sparse vector), this can significantly reduce object allocation overhead. Reducing needless

object allocations has resulted in many significant, measurable performance improvements.

Many LensKit data structures and the Cursor API support fast iteration.

3.7 Modular Algorithms

In order to reproduce a wide variety of previously-studied algorithms and configurations,

as well as facilitate easy research on new configurations and tunings of existing recom-

mender algorithms, LensKit uses a heavily modular design for its algorithm implementa-

tions. LensKit also provides configuration facilities built around this design to make it easy

to configure, instantiate, and use modular algorithms.

LensKit algorithms are, wherever practical, broken into individual components that per-

form discrete, isolated portions of the recommendation computation, as discussed in sec-

tion 3.2. Similarity functions, data normalization passes, baseline predictors, and neigh-

borhood finders are just some examples of the types of distinct components in LensKit

algorithms. The Strategy pattern [Gam+95b] provides the basis for the design of many of

these components and their interactions.

We also make significant use of builders or factories. We prefer to create immutable

components (or at least visibly immutable objects — some have internal caching mecha-

nisms), and keep components that exist primarily to make data available simple. To that

end, we will make a component that is a data container with well-defined access operations

paired with a builder to do the computations needed to build the object. This keeps the build

computations separate from the (relatively simple) access operations, and also allows the

build strategy to be replaced with alternative strategies that produce the same type of data

object.
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Together, the modularity and separation strategies LensKit employs provide two signif-

icant benefits:

• Algorithms can be customized and extended by reimplementing just the components

that need to be changed. For example, if a researcher wishes to experiment with

alternative strategies for searching for neighbors in user-based collaborative filtering,

they only need to reimplement the neighborhood finder component and can reuse the

rest of the user-based CF implementation.

• New algorithms can be built with less work by reusing the pieces of existing algo-

rithms. A new algorithmic idea that depends on item similarity functions and a trans-

posed (item-major) rating matrix can reuse those components from the item-item CF

implementation.

LensKit algorithms also make significant use of other common design patterns, such as

Builder and Facade, to organize algorithm logic [Gam+95a].

To enable components to be configurable, LensKit components are designed using the

dependency injection pattern [Mar96]. The idea of dependency injection is that a compo-

nent requires the code that instantiates it to provide the objects on which it depends rather

than instantiating them directly. With this design, the caller can substitute alternate imple-

mentations of a component’s dependencies and substantially reconfigure its behavior.

Since a LensKit algorithm implementation consists of many interoperating components,

instantiating all the objects needed to use one is cumbersome, error-prone, and difficult to

keep up-to-date as the code is extended and improved. LensKit uses an automated depen-

dency injector (Grapht; see chapter 4) to ease this process. Grapht scans the Java class

implementing each component, extracts its dependencies, and instantiates the graph of ob-
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jects needed to realize a particular recommendation algorithm. As shown in listing 3.1, the

client code just needs to specify what implementation it wants to use for various interfaces,

and the values of some parameters, and LensKit will use Grapht to instantiate the objects

correctly. Figure 3.3 shows the full object diagram for LensKit’s item-item collaborative

filter; the large number of components intricate dependency edges would be impractical to

instantiate manually. LensKit also provides defaults for most of its interfaces and parame-

ters, so users only need to specify configuration points where they wish to deviate from the

default.

This results in such things as being able to use item-item collaborative filtering as a

baseline for a matrix factorization approach. We have sought to avoid imposing artificial

limits on the ways that components can be combined.

The components in a LensKit algorithm generally divide into two categories: pre-built

components are built once from the underlying data and can be reused across multiple rec-

ommender invocations; they may go a bit stale in a production system, but are usually

rebuilt on a schedule (e.g. nightly) to take new data into account. These components are

often statistical models, precomputed matrices, etc.; they are marked with the @Shareable

annotation to allow LensKit’s tooling to recognize and work with them. Runtime compo-

nents need live access to the data source and are used to directly produce recommendations

and predictions. This distinction is used to aid in web integration (section 3.9) and speed

up evaluation (section 3.8.4).

3.7.1 Basic Component Implementations

LensKit provides basic implementations of several of its core interfaces. The net effect of

these implementations and LensKit’s default settings is that the user only needs to configure

the item scorer to get a reasonably full-featured recommender that can generate recommen-
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dation lists and predict ratings. They also provide common functionality to enable new

recommenders to be written without extensive code duplication.

The TopNItemRecommender uses the item scorer to score the candidate items and rec-

ommends the top 𝑁 . It is the default implementation of ItemScorer. By default, it excludes

the items that the user has interacted with (e.g. rated), unless the client specifies a different

exclude set.

SimpleRatingPredictor implements RatingPredictor by wrapping an ItemScorer and clamp-

ing the item scores to be within the range of allowable ratings. It just does a hard clamp

of the values without any other rescaling. If no rating range is specified, the rating pre-

dictor passes through the item scores unmodified. Integrators can specify rating ranges by

configuring a PreferenceDomain object.

The simple rating predictor can also use a second item scorer, the baseline scorer, spec-

ified with the @BaselineScorer qualifier. If a baseline scorer is available, it is used to supply

scores for items that the primary scorer cannot score. Most recommenders are configured

to use a full recommendation algorithm as the primary scorer and a simple but always-

successful scorer, such as a personalized mean or item average, as the baseline scorer, so

the system can always predict ratings. LensKit also provides a FallbackItemScorer that im-

plements the fallback logic as an item scorer instead of a rating predictor; this can be used

to allow other components using an item scorer, such as an item recommender, to use the

fallback scores.

LensKit also has a QuantizedRatingPredictor that rounds the scores produced by an

item scorer to the nearest valid rating value (e.g. on a half-star rating scale, it will round

them to the nearest 0.5).
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3.7.2 Summarizers and Normalizers

Many recommender algorithms have historically operated on the user’s rating vector. Sys-

tems that do not use explicit ratings may produce some kind of a vector over items for each

user, representing the user’s history with or preference for that item, such as a vector of play

or purchase counts. Several algorithms can be adapted to implicit preference data simply by

using some vector other than the rating vector, perhaps with small tweaks to the algorithm’s

computations.

In both implicit and explicit cases, it is also common to normalize the vector in some

way, such as mean-centering it normalizing it to 𝑧-scores.

LensKit exploits this potential for generalizability with history summarizers, expressed

in the UserHistorySummarizer interface. A history summarizer takes a user’s history, ex-

pressed as a list of events, and produces a sparse vector whose keys are items and values are

some real-valued summary of the user’s preference for that item.

The default history summarizer is RatingVectorUserHistorySummarizer, which sum-

marizes a user’s profile by extracting their most recent rating for each item. There is also

EventCountUserHistorySummarizer, which counts the number of times some type of event

occurs for each item. Using this summarizer with an event type Play, for example, would

count the number of Play events associated with each item for that user, resulting in a play

count vector.

For convenience, in the remainder of this section, we will use rating to refer to the

summarized value associated with an item in the user’s profile; if we need to distinctly refer

to different types of events, we will call them Rating events.

As well as summarizers, LensKit provides and uses various normalizers. The most gen-

eral normalizers are vector normalizers, defined by the VectorNormalizer interface. Vector
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SparseVector userData = /* user ratings */;

// capture a transformation based on the user data

VectorTransformation xform = normalizer.makeTransformation(userData);

// normalize the user's data

MutableSparseVector normed = userData.mutableCopy();

xform.apply(normed);

MutableSparseVector output = /* construct output vector */;

// do some computations to produce outputs

// and de-normalize the data at the end:

xform.unapply(output);

Listing 3.4: Use of vector normalizers.

normalizations operate on two vectors: the reference vector and target vector. The reference

vector is used to compute the basis of the normalization; for example, MeanCenteringVec-

torNormalizer computes the mean of the reference vector. The target vector is the vector

actually modified. If they are the same vector, normalization has the effect of e.g. subtract-

ing the mean value from every value in the vector.

To be reversible, vector normalizers also support creating a transformation from a ref-

erence vector. This operation captures the transformation that will be applied, such as the

mean value to subtract. The transformation can then be applied and unapplied to any vec-

tor. Listing 3.4 shows this in action: normalizing user data, computing some output, and

then using the original transformation (such as a mean-centering transform using the user’s

mean rating) to de-normalize the output.

In addition to the generic VectorNormalizer interface, LensKit provides user- and item-

specific normalizers. These interfaces function identically to the vector normalizer, includ-

ing producing vector transformations, except that they take a user or item ID in addition to

a reference vector. This allows normalizations to take into account other information about

the user or item; such normalizers often depend on either a DAO to access user or item data,
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or some other component which may take advantage of knowing the user or item for which

a vector should be normalized. The default implementations of these interfaces ignore the

user or item ID and delegate to a VectorNormalizer.

3.7.3 Baseline Scorers

LensKit provides a suite of baseline item scorers, using simple averages to compute scores

for items. These baselines serve multiple roles. They are often used as fallbacks to predict

ratings or compute recommendations when a more sophisticated recommender cannot (e.g.

a nearest-neighbor collaborative filter cannot build a neighborhood). They are also used

for data normalization — many standard algorithm configurations apply the sophisticated

algorithm to the residual of the baseline scores rather than the raw ratings. This is done

by using the baseline-subtracting user vector normalizer, an implementation of UserVec-

torNormalizer (section 3.7.2) that transforms vectors by subtracting the score produced by

a baseline scorer. This paradigm is an extension of the mean-centering normalization that

has long been employed in recommender systems and other data analysis algorithms. It

results in the following final scoring rule [ERK10], where 𝑏𝑢𝑖 is the baseline score for user

𝑢 and item 𝑖:

score(𝑢, 𝑖) = 𝑏𝑢𝑖 + score′(𝑢, 𝑖)

All baseline scorers implement the ItemScorer interface, so they can be used on their

own to score items. This also means that any item scorer can be used as a baseline in

another algorithm, a significant aspect of the composability of LensKit algorithms. LensKit

provides the following baseline scorers:

ConstantItemScorer Scores every item with some pre-defined constant value.

46



3.7. Modular Algorithms

GlobalMeanRatingItemScorer Scores every item with the global mean rating (𝑏𝑢𝑖 = 𝜇).

ItemMeanRatingItemScorer Scores every item with its mean rating, so 𝑏𝑢𝑖 = 𝜇𝑖. This

scorer also takes a damping parameter 𝛾 to bias the computed mean ratings towards

the global mean for items with few ratings. A small number of ratings is not a good

sample of the true quality of that item; this term keeps items from having extreme

means without substantial evidence to support such values. Equations (3.1) and (3.2)

show the full formulas for this scorer, with the set 𝑈𝑖 consisting of users who have

rated item 𝑖:

𝜇̄𝑖 =
∑𝑢∈𝑈𝑖

(𝑟𝑢𝑖 − 𝜇)
|𝑈𝑖| + 𝛾 (3.1)

𝑏𝑢𝑖 = 𝜇 + 𝜇̄𝑖 (3.2)

𝛾 > 0 is equivalent to assuming a priori that every item has 𝛾 ratings equal to the

global mean 𝜇. When few users rate the item, it damps the effect of their ratings so

that the system does not assume that an item has 5 stars because it has a single 5-star

rating. As more users rate the item, the real ratings increasingly dominate these fake

ratings and the baseline score approaches the simple mean of user ratings for the item.

UserMeanItemScorer This scorer is more sophisticated. It depends on another scorer (des-

ignated the user mean baseline), producing scores 𝑏′
𝑢𝑖, and a user history summarizer

that produces a vector ⃗𝑢 of item values for the user (e.g. ratings). It computes the

mean difference 𝜇̂𝑢 between the user’s value for each item and the user mean base-

line’s scores for that item; it scores each item with its baseline score and the user

mean offset. Equations (3.3) and (3.4) show the formulas for this computation; 𝛾 is
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again a damping term, working as it does in the item mean rating scorer, and 𝐼𝑢 is the

set of items in ⃗𝑢.

𝜇̂𝑢 =
∑𝑖∈𝐼𝑢

(𝑢𝑖 − 𝑏′
𝑢𝑖)

|𝐼𝑢| + 𝛾 (3.3)

𝑏𝑢𝑖 = 𝑏′
𝑢𝑖 + 𝜇̂𝑢 (3.4)

If the user has no ratings, 𝜇̂𝑢 = 0, so this scorer’s scores fall back to the underlying

baseline. If the item mean rating scorer is used as the user mean baseline and user

profiles are summarized by rating vectors, then 𝜇̂𝑢 is the user’s average deviance from

item average rating and 𝑏𝑢𝑖 = 𝜇 + 𝜇̄𝑖 + 𝜇̂𝑢. If the global mean rating is used as the

baseline, then this scorer uses the user’s average, falling back to the global mean when

the user has no ratings.

3.7.4 Item-Item CF

LensKit components are also designed to be as composable as practical, so they can be com-

bined in arbitrary fashions for maximal flexibility. LensKit’s item-item CF implementation

provides item-based collaborative filtering over explicit ratings [Sar+01] (including rating

prediction) and implicit data represented as item preference vectors [DK04]. Item-based

CF examines a user’s profile and recommends items similar to items they have liked in the

past.

The item-item implementation consists of many components; fig. 3.3 shows a typi-

cal configuration as specified in listing 3.6. The core of the item-item implementation

is ItemItemScorer, an implementation of ItemScorer using item-based CF. It combines a

user’s preference data, computed using a summarizer, with item neighborhoods provided
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by an ItemItemModel. Each neighborhood consists of a list of items with associated simi-

larity scores, sorted in nonincreasing order by similarity.

Equation (3.5) shows the basic formula for LensKit’s item-item collaborative filter,

where 𝑏⃗𝑢 is the baseline scores for each of the items in the user’s summary vector ⃗𝑢, 𝑁(𝑖) is

the neighborhood of 𝑖, and 𝑓 is a neighborhood scoring function. Typically, 𝑁(𝑖) is limited

to the 𝑛 items most similar to 𝑖 that also appear in ⃗𝑢. If the normalizer 𝑔 is a baseline-

subtracting normalizer, the formula expands to eq. (3.7).

score(𝑢, 𝑖) = 𝑔−1(𝑓 (𝑖, 𝑁(𝑖), 𝑔( ⃗𝑢))) (3.5)

𝑔( ⃗𝑟) = ⃗𝑟 − 𝑏⃗𝑢 (3.6)

score(𝑢, 𝑖) = 𝑏𝑢𝑖 + 𝑓 (𝑖, 𝑁(𝑖), ⃗𝑢 − 𝑏⃗𝑢) (3.7)

Computing item scores from a neighborhood and the user vector is abstracted in the

NeighborhoodScorer component (𝑓 in eq. (3.5)). There are two primary implementations

of this interface: WeightedAverageNeighborhoodScorer computes the average of the user’s

ratings or scores for each item in a neighborhood, weighting them by the item’s similarity

to the target item:

𝑓 (𝑖, 𝑁, ⃗𝑢′) =
∑𝑗∈𝑁 sim(𝑖, 𝑗)𝑢′

𝑗
∑𝑗∈𝑁 |sim(𝑖, 𝑗)|

SimilaritySumNeighborhoodScorer simply sums the similarities of all items that the ap-

pear in the user’s summary; this is useful for unary domains such as purchases where the

user summary value is 1 for items the user has purchased and 0 otherwise.

The default ItemItemModel is SimilarityMatrixModel, which stores a list of neighbors for

each item in memory. It is not a full matrix, but rather a mapping from item IDs to neigh-
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bor lists forming a specialized sparse matrix. The similarity matrix model in turn is built by

the ItemItemModelBuilder. The item-item model depends on two primary components: the

item similarity function, specified by the ItemSimilarity interface, and an ItemItemBuildCon-

text. The build context consists of the ratings matrix, normalized and organized by item.

It is implemented as a map of item IDs to sparse vectors of user ratings for that item. With

this separation, the model builder only needs to compute and store item similarities, and the

build context builder takes care of whatever normalization or other data pre-processing is

needed.

The ItemItemModelBuilder can take advantage of 2 properties of the similarity func-

tion: whether or not it is symmetric, and whether or not it is sparse. Symmetric similarity

functions have their ordinary definition: a function is symmetric iff 𝑠(𝑖, 𝑗) = 𝑠(𝑗, 𝑖). Sparse

similarity functions are functions that will return 0 if the items have no users in common.

Most common similarity functions, such as vector cosine, are both sparse and symmetric.

Conditional probability [DK04] is a notable example of a non-symmetric similarity func-

tion, and item similarity functions that take into account external data such as item metadata

may be non-sparse. The ItemSimilarity interface has isSparse() and isSymmetric() methods

to allow a similarity function to report its behavior.

If the similarity function is symmetric, the default model builder takes advantage of that

by only computing the similarity between each unordered pair of items once and storing each

item in the other’s neighborhood. If the similarity function is sparse, then (by default) the

model builder will attempt to exploit that sparsity to reduce the number of item comparisons

it actually makes. In addition to the item-indexed rating matrix, the build context contains

a mapping from user IDs to sets of item IDs that they have rated. For each row in the

similarity matrix it is building, the model builder iterates over the users that have rated the

row’s item, then over each of that users’ items, skipping items it has already seen. For items
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with few potential neighbors, this can greatly reduce the number of comparisons that need

to be performed. The sparsity exploitation is also adaptive: if, while scanning the potential

neighbors for a row, the model builder gets to a point where it has processed 75% of the

items but still has at least 50% of the row’s users left to go, it skips the sparsity and just

compares with the rest of the items.7 In this way, it attempts to avoid situations where the

bookkeeping for exploiting sparsity is more expensive than the extra item comparisons; this

can happen when the data set has relatively few items compared to the number of users.

This capability can also be disabled completely if it is causing problems for a particular

data set or experiment.

The model builder also takes a few additional parameters. @ModelSize controls the

maximum number of neighbors retained for each item. The model builder keeps a size-

limited heap for each item, allowing it to efficiently retain the most similar neighbors for

each item. If the model size is 0, the model builder retains all neighbors.

Finally, the model builder takes a Threshold to filter neighbors. The default threshold

excludes all neighbors with a negative similarity. This allows the neighborhoods to be fil-

tered to require items to have some minimum similarity (or minimum absolute similarity).

Neighbors are filtered before being counted, so a model size of 500 retains the 500 most

similar items that pass the threshold.

The item-item CF implementation also contains two variants on the basic model build-

ing process. The NormalizingItemItemModelBuilder replaces ItemItemModelBuilder and

allows item neighborhood vectors to be normalized. Rather than accumulating item neigh-

borhoods in a map of heap-backed accumulators, it processes items strictly one at a time,

declining to take advantage of symmetry or sparsity. After computing all the similarities in
7These values have not been empirically tuned, but seem to work reasonably well in practice in our ap-

plications.
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each row, it applies an ItemVectorNormalizer to that row’s vector. This allows techniques

such as normalizing an item’s neighborhood to the unit vector [DK04]. The model builder

finally truncates the neighborhood with a size cap and/or a threshold and moves on to the

next item.

The default item-item build context builder processes the input data on a user-by-user

basis, summarizing the user’s profile and applying a UserVectorNormalizer to the summary

prior to storing each item value in its corresponding item vector. We have found, however,

that centering user ratings by item mean is an effective normalization strategy [Eks+11];

processing ratings user-by-user and then storing them by item is needlessly memory- and

time-intensive for this simple strategy. The ItemwiseBuildContextBuilder replaces the de-

fault build context builder and processes ratings item-by-item, applying a ItemVectorNor-

malizer to each item’s rating vector. The MeanCenteringVectorNormalizer can be used for

normalizing the item vectors normalize them by subtracting the item’s average rating from

each rating. This context builder reduces both the memory and time requirements of the

item-item model build process in many situations, at the expense of supporting per-user

normalization and general summarizers (it only considers ratings).

To summarize:

1. The ItemItemBuildContextBuilder summarizes the user profiles, normalizes them,

and builds the ItemItemBuildContext. The build context is a rating-indexed matrix of

user-item preference measurements.

2. The ItemItemModelBuilder uses the context and the ItemSimilarity to build an item-

item similarity matrix. The similarity matrix implements ItemItemModel.

3. The default ItemSimilarity implementation ignores the item IDs and delegates to a

VectorSimilarity.
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4. The ItemItemScorer uses the ItemItemModel, the UserHistorySummarizer, and the

UserEventDAO to obtain the user’s current profile and score items by their similar-

ity to items the user likes. This is done using the NeighborhoodScorer, for which

there are different implementations for aggregation algorithms appropriate for differ-

ent types of input data.

The LensKit-provided components have the following configuration points:

• The context preparation strategy (the provider for ItemItemBuildContext).

• The user vector summarizer.

• The user vector normalizer (used both for pre-processing data for the context and

for normalizing and denormalizing rating in the scoring process; it is possible to

configure these separately, but usually results in bad performance).

• For itemwise context preparation, the item rating vector normalizer.

• The model building strategy (default or normalizing).

• For the normalizing model building strategy, the item neighborhood vector normal-

izer.

• The maximum number of neighbors to retain for each item (@ModelSize).

• The item similarity function.

• The neighborhood score aggregation algorithm.

• @NeighborhoodSize, the maximum number of items to use when computing each

score.
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In addition to supporting most standard configurations of item-item collaborative filter-

ing, this setup allows a great deal of flexibility for novel adaptations as well. While we have

not yet done so, it would not be difficult to incorporate ranking metrics [AMT05; Eks+10]

into the model building process. In other experiments (and a homework assignment for our

recommender systems course), we have completely replaced the item-item model with one

that returns neighborhoods based on a Lucene index of movie tags [ER12]. LensKit’s item-

item CF implementation has extensive flexibility while still performing well on common

sizes of data sets.

3.7.5 User-User CF

User-based collaborative filtering, first presented by Resnick et al. [Res+94], is the oldest

form of modern automated collaborative filtering. Unlike item-based CF, it finds users who

are similar to the active user and recommends things liked by those users. This is typically

done by using user neighborhoods to estimate the active user’s preference for each item,

often with a weighted average of neighbors’ ratings, and recommending the top-predicted

items.

LensKit’s user-user CF implementation is also extensively modular, although it does

not have a concept of a model. The user-user CF code is currently limited to using explicit

ratings; there are no fundamental problems we know of that would prevent it from being

extended to arbitrary user summaries, we just have not yet written that code.

The central class is UserUserItemScorer; selecting it as the implementation of Item-

Scorer will result in a user-user collaborative filter. The user-user item scorer uses a UserEvent-

DAO to get user data, a UserVectorNormalizer to normalize user data (both that of the active

user and their potential neighbors), and a NeighborFinder to find user neighbors.

The neighborhood finder has a single method that takes a user profile and a set of items
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that need to be scored. It returns a collection of potential neighbors, each neighbor object

representing a user with its rating vector and similarity to the active user. The scorer uses

these neighbors to score the items as shown in eq. (3.8); ̃𝑢 denotes the normalized version

of a user 𝑢 or a rating value. If users are normalized by mean-centering their ratings, this

equation reduces to the same formula as used by Resnick et al. [Res+94].

score(𝑢, 𝑖) = denorm ⎛⎜
⎝

∑𝑣∈𝑁(𝑢,𝑖) sim( ̃𝑢, ̃𝑣) ̃𝑟𝑣𝑖
∑𝑣∈𝑁(𝑢,𝑖) |sim( ̃𝑢, ̃𝑣)| ; 𝑢⎞⎟

⎠
(3.8)

The default implementation of the neighborhood finder scans the event database for

potential neighbors. Only those users who have rated one of the items to be scored are

useful as neighbors; further, with a sparse similarity function, users who have not rated any

of the same items as the active user will not be good neighbors. To optimize the search, the

neighborhood finder takes the smaller of the active user’s set of rated items and the set of

target items, and considers all users who have rated at least one item among them.

LensKit also includes a neighborhood finder that uses the same logic but with a snapshot

of the rating data stored in memory as a ‘model’. This is much more efficient to access than

a database for finding neighbors and makes user-user a more practical algorithm. When

using this neighborhood finder, the active user’s most recent ratings are still used, but their

potential neighbors are considered frozen in time as of the last time a snapshot was taken.

In production, this would likely happen nightly.

LensKit supports a full range of user similarity functions via the UserSimilarity interface.

This interface is equivalent to the ItemSimilarity interface of item-item CF, and generally

delegates to a VectorSimilarity.
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3.7.6 Matrix Factorization CF

LensKit provides biased matrix factorization based on the work of Funk [Fun06] and subse-

quent developments [Pat07]. Biased matrix factorization takes the rating matrix 𝐑, subtracts

the baseline scores (often user and item biases), and computes a factorization resembling a

singular value decomposition:

𝐑 = 𝐁 + 𝐖𝚺𝐗T

There are various ways of computing the decomposition of the matrix; LensKit’s fac-

torization architecture allows for different factorization algorithms to be plugged in and

defaults to using gradient descent to learn user-feature and item-feature matrices [Fun06].

LensKit’s matrix factorization package consists of two main parts. The general matrix

factorization package provides components for using a biased matrix factorization indepen-

dent of how it was computed:

MFModel A generic matrix factorization model, exposing the user- and item-feature matri-

ces. It also stores mappings between user and item IDs and their respective row and

column numbers in the matrices. It does not separate out the Σ matrix of singular

values (feature weights); instead, they are folded into the user and item matrices.

BiasedMFKernel An interface for kernel functions to recombine user- and item-feature vec-

tors to produce a prediction. It takes the baseline score, user vector, and item vector,

and produces a final user-item score. The default implementation, DotProductKernel,

adds the dot product of the vectors to the baseline score:

score(𝑢, 𝑖) = 𝑏𝑢𝑖 + 𝐰(𝑢) ⋅ 𝐱(𝑖)
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An alternate implementation, DomainClampingKernel, operates like the dot product

kernel but clamps the value to be within the valid range of ratings after each addition

(numbering features 1 through 𝑓max) [Fun06]:

score(𝑢, 𝑖) = 𝑠(𝑢, 𝑖, 𝑓max)

𝑠(𝑢, 𝑖, 𝑓 ) =
⎧{{
⎨{{⎩

𝑏𝑢𝑖 𝑓 = 0

clamp(𝑠(𝑢, 𝑖, 𝑓 − 1) + 𝑤𝑢𝑓 𝑥𝑖𝑓 𝑓 > 0

BiasedMFItemScorer Uses a baseline scorer, MFModel, and BiasedMFKernel to score items

for users, implementing the ItemScorer interface.

The general biased MF classes can produce scores, but have no way to learn the model.

The regularized gradient descent (FunkSVD) classes fill in this gap and provide some ad-

ditional functionality. FunkSVDModelBuilder builds a FunkSVDModel (a subclass of MF-

Model) using gradient descent over the ratings in the system. It learns the features one at a

time, training each to convergence before moving on to the next; this iteration is controlled

by a learning rate 𝜆, a regularization coefficient 𝛾, and a stopping condition (usually an

epoch count or a threshold). Listing 3.5 shows the algorithm for training the model.

The factorization produced by this algorithm is not a well-formed singular value de-

composition. It does not have a distinct 𝚺 matrix, but that can be extracted from 𝐖 and 𝐗
by setting 𝜎𝑓 = ‖𝐰(𝑓 )‖2‖𝐱(𝑓 )‖2. More importantly, the left and right matrices do not form

an orthogonal basis as they do in a true SVD. As a result, standard SVD and latent seman-

tic analysis techniques such as computing updated user and item vectors by ‘folding in’

[BDO95; Sar+02] do not operate correctly.

The base MF item scorer, BiasedMFItemScorer, does not do any updating of user or

item vectors: if the user does not have a feature vector in the model, it just returns the
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1: procedure TMF(𝑅, 𝑘)
2: shuffle list of ratings
3: 𝑊 ← new 𝑚 × 𝑘 matrix filled with 0.1
4: 𝑋 ← new 𝑛 × 𝑘 matrix filled with 0.1
5: for 𝑓 ← 1 to 𝑘 do
6: repeat
7: for rating 𝑟𝑢,𝑖 in 𝑅 do
8: 𝑝𝑢,𝑖 ← 𝑏𝑢,𝑖 + ∑𝑓

𝑘=1 𝑢𝑢,𝑘𝑚𝑖,𝑘
9: 𝜖 ← 𝑟𝑢,𝑖 − 𝑝𝑢,𝑖

10: 𝑤𝑢,𝑘 ← 𝑤𝑢,𝑘 + 𝜆(𝜖𝑥𝑖,𝑘 − 𝛾𝑤𝑢,𝑘)
11: 𝑥𝑖,𝑘 ← 𝑥𝑖,𝑘 + 𝜆(𝜖𝑤𝑢,𝑘 − 𝛾𝑥𝑖,𝑘)
12: until feature 𝑓 converges
13: return 𝑊, 𝑋

Listing 3.5: FunkSVD training algorithm.

baseline scores. FunkSVDItemScorer is more sophisticated: it can take the active user’s

current rating vector and do a few rounds of gradient descent to freshen up their feature

vector prior to computing scores. If the user is new and does not have a feature vector in

the model, it will use the average user weight for each feature as the starting point.8

For efficient iteration, the FunkSVDItemBuilder uses a helper structure, a PackedPrefer-

enceSnapshot, to represent the data over which it is to train. Currently, packed preference

snapshots are built from rating data directly, but alternative means of building them would

allow FunkSVD to operate on other types of data without further changes.

3.7.7 Configuring Algorithms

On top of Grapht’s configuration API (section 4.4.8), LensKit provides a simple syntax for

configuring recommender algorithms. This syntax is implemented as an embedded domain-

specific language in Groovy, a popular scripting language for the Java virtual machine with
8We do not yet have a lot of experience using this code in production, so it is not well-tested and its

behavior is not yet well understood.
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import org.grouplens.lenskit.baseline.*

import org.grouplens.lenskit.transform.normalize.*

import org.grouplens.lenskit.knn.*

import org.grouplens.lenskit.knn.item.*

bind ItemScorer to ItemItemScorer

bind (BaselineScorer, ItemScorer) to UserMeanItemScorer

bind (UserMeanBaseline, ItemScorer) to ItemMeanRatingItemScorer

bind UserVectorNormalizer to BaselineSubtractingUserVectorNormalizer

Listing 3.6: Item-item configuration file (producing the setup in fig. 3.3).

good facilities for building fluent syntaxes.

The syntax is a relaxed version of the Grapht API with some scoping conveniences for

managing context-sensitive configuration. Listing 3.6 shows an example configuration of

an item-item collaborative filter as a Groovy script.

This syntax provides a more syntactically lightweight means of configuring recom-

menders than full Java syntax. It also allows recommender definitions to be treated as con-

figuration files rather than embedded in the source files of an application, and the LensKit

command line tools operate on these scripts.

3.8 Offline Evaluation

LensKit’s evaluation toolkit provides support for running offline, data-driven evaluations

of recommender performance using a traditional train/test approach with cross-validation.

We intend it to be a versatile platform for reproducible recommender evaluations and ex-

periments; in our own work, we generally publish the evaluation scripts used to produce our

results [Eks+11; ER12], and we encourage others to do the same.

The following goals drove the design of the LensKit evaluator:
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• Writing evaluations should be easy, with minimal cumbersome syntax.

• Best practices should be the default.

• The toolkit should be flexible enough to reproduce a wide range of experiments, in-

cluding those with flawed methodologies, and experiment with new evaluation tech-

niques.

• Evaluations should be as efficient as possible.

• It is not LensKit’s job to analyze the results of the evaluation. Evaluation output

(metrics, actual predictions and recommendations, etc.) should be written to CSV

files for further analysis with R, Excel, SciPy, or other software.

The LensKit evaluator provides facilities for processing data sets (crossfold splitting,

subsampling, format conversion) and evaluating algorithms over multiple train-test data

sets and measuring their performance.

3.8.1 Evaluation Scripts

LensKit evaluations are defined with Groovy scripts, using an embedded DSL to describe

different types of evaluation actions. Evaluations are organized around tasks, such as cross-

fold (to partition data for cross-validation) and trainTest (to run a train-test evaluation over

one or more data sets). Tasks can optionally be contained within targets; in this case, their

execution is deferred until the target is executed, allowing a single evaluation script to de-

fine multiple evaluation capabilities.9 Listing 3.7 shows an example evaluation script of two

algorithms over the MovieLens 100K data set.
9The ‘target’ functionality will be deprecated in the future, as we plan to simplify the LensKit evaluator

to be controlled by the Gradle build system instead of implementing its own build logic.
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// imports elided

trainTest {

dataset crossfold("ml-100k") {

source csvfile("ml-100k/u.data") {

delimiter "\t"

domain minimum: 1.0, maximum: 5.0, precision: 1.0

}

holdout 10

partitions 5

}

output "eval-results.csv"

metric CoveragePredictMetric

metric RMSEPredictMetric

metric NDCGPredictMetric

algorithm("ItemItem") {

// use the item-item rating predictor with a baseline and normalizer

bind ItemScorer to ItemItemScorer

bind (BaselineScorer, ItemScorer) to UserMeanItemScorer

bind (UserMeanBaseline, ItemScorer) to ItemMeanRatingItemScorer

bind UserVectorNormalizer to BaselineSubtractingUserVectorNormalizer

set ModelSize to 500

set NeighborhoodSize to 30

}

algorithm("UserUser") {

// use the user-user rating predictor

bind ItemScorer to UserUserItemScorer

bind (BaselineScorer, ItemScorer) to UserMeanItemScorer

bind (UserMeanBaseline, ItemScorer) to ItemMeanRatingItemScorer

bind VectorNormalizer to MeanVarianceNormalizer

within(NeighborhoodFinder) {

bind VectorNormalizer to MeanCenteringVectorNormalizer

}

set NeighborhoodSize to 30

}

}

Listing 3.7: Example of a LensKit evaluation script. 62
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Since these scripts are written in a full programming language, researchers have a great

deal of flexibility in the configurations they can generate. For example, it is common to

generate algorithm definitions in a loop over some parameter such as neighborhood size in

order to plot accuracy as those parameters change.

We will not go into all the details here, but LensKit intercepts Groovy method calls to

delegate evaluation directives to various constructors and addFoo/setFoomethods on LensKit

classes. For example, to evaluate the crossfold block in listing 3.7, LensKit does the fol-

lowing:

1. Look up the crossfold method in a properties file on the classpath and find that it is

implemented by the CrossfoldTask class.

2. Call the task class’s constructor with the argument "ml-100k".

3. Evaluate the block with a delegate (a Groovy mechanism for intercepting method and

property references when evaluating closures or code blocks); this delegate imple-

ments the rest of the logic.

4. Translate the source, holdout, and partitions calls into calls to setSource, setHoldout,

and setPartitions on the task class.

5. Call the call() method on CrossfoldTask to run the crossfold and obtain a list of train-

test data source objects representing each of the 5 splits it will generate.

The resulting list is then handled by the delegate in use to configure the trainTest block;

that delegate forwards the call of dataset with a list of data sets (returned from crossfold)

into multiple calls to TrainTestTask’s addDataset method.
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Groovy’s extensive functionality for customizing code evaluation allows us to provide

an evaluation scripting syntax that reads like a structured, declarative configuration file,

while allowing users to take advantage of a full programming language when their needs so

require.

3.8.2 Data Sets

The evaluator operates with data primarily in two forms: delimited text files and binary

rating files.

The primary data management tasks are as follows:

crossfold The crossfold task takes a single data source of ratings data and splits in into 𝑁

partitions for cross-validation.

subsample The subsample task takes a single data set of ratings and randomly sub-samples

them by user, item, or rating to produce a smaller data set.

pack The pack task takes a data set and packs it into a binary file for efficient access.

The default crossfold configuration splits the users evenly into 𝑁 partitions. For each

partition, the test set consists of selected ratings from each user in that partition, and the

training set consists of those users’ non-selected ratings along with all ratings from the users

in the other partitions. User ratings can be selected by picking a fixed number of ratings

(holdout), a fraction of the ratings (holdoutFraction), or picking all but a fixed number of

ratings (retain). The test ratings can also be selected randomly or by timestamp (with later

ratings going into the test set).

In addition to user partitioning, the crossfolder supports partitioning ratings evenly into

𝑁 partitions, and creating 𝑁 samples of fixed size of the users (allowing 𝑁 partitions of
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a large data set with fewer users per partition; this can decrease the time required to run

experiments on data sets with large numbers of users).

Many algorithms benefit from having the rating data available in memory in order to

train the model and compute predictions and recommendations. Repeatedly scanning a

delimited text file is very time-intensive. Loading a large data set into the Java heap with an

object per rating, however, takes a good deal of memory and places additional strain on the

garbage collector. In early versions of LensKit, we tried to use the SQLite embedded DBMS

to provide indexed access to ratings, but it did not perform nearly as well as in-memory data.

LensKit now uses packed binary rating files to provide efficient data access for rec-

ommender evaluation. These files are read using memory-mapped IO, so on systems with

adequate RAM the data lives in memory and the operating system’s cache manager can

take care of paging data in and out of memory as appropriate. The bulk of the file consists

of rating data in binary format, either (𝑢, 𝑖, 𝑟) or (𝑢, 𝑖, 𝑟, 𝑡) tuples. The tuples are stored in

timestamp order. The file also contains user and item indices; for each user (resp. item),

the index stores the user (resp. item) ID, its rating count, and indices into the tuple store

for its ratings. The indices are stored in user/item order and can be searched with binary

search. This format provides very memory-efficient storage and, when paired with fast it-

eration, time-efficient data access. In addition to the pack eval task, LensKit provides a

pack-ratings command in on the command line (appendix A.8) to pack a rating file.

The data set tasks, along with additional helpers such as the csvfile builder to define a

CSV data source, produce data set objects (either DataSource, for a single source of ratings

data, or a TTDataSet for a train-test pair of data sources) that can be manipulated by the

eval script or passed directly to other data processing classes or the dataset directive of

the train-test evaluator. Data sets are identified by a name as well as optional attributes;

attributes are stored in a map, and the output CSV files contain a column for each distinct
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attribute name used across the data sets.

3.8.3 Measuring Performance

The evaluator takes a set of algorithms and a set of train-test data sets and evaluates each

algorithm’s accuracy over each train-test pair. For each algorithm and data set, the eval-

uator builds a recommender model (if applicable) over the training data and attempts to

recommend or predict for each user in the test data. It runs various metrics on the recom-

mendations or predictions and reports their results in a CSV file. Like data sets, algorithms

can also have attributes associated with them that appear as columns in the CSV output; in

this way, if there is a loop over values of some parameter, those values can appear in their

own columns so the analysis code does not need to parse them out of algorithm identifier

strings.

Metrics can report results in three ways: they can produce per-user data values, which

will be included in an optional CSV file of per-user metrics; they can produce aggregate

values over an entire experiment configuration (algorithm / data set pair); and they can

write outputs to files entirely under their control. LensKit provides the following metrics:

MAE Mean absolute error of predicting test ratings, available in both user-averaged and

global variants. This metric ignores unpredictable ratings.

RMSE Root mean squared error of predicting test ratings, available in both user-averaged

and global variants. Like MAE, it ignores unpredictable ratings.

Coverage (predict) Measures the number of attempted and provided rating predictions to

compute coverage.
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Predict nDCG Normalized discounted cumulative gain [JK02] used as a rank accuracy

metric over predictions. We rank the test items by predicted rating and compute the

nDCG of this ordering, using the user’s actual rating of each item as its utility or gain.

Predict half-life utility nDCG computed using a half-life decay for the discount function

[BHK98]. This metric has the benefit of being rooted in a probabilistic model of user

behavior, as well as discounting the second item (when using logarithmic discounting

of base 𝑏, typically 2 in traditional nDCG, the first 𝑏 items have maximum weight).

Top-𝑁 nDCG nDCG computed over fixed-length recommendation lists.

Top-𝑁 Precision and Recall Precision and recall computed over fixed-length recommen-

dation lists.

The predict metrics use the algorithm’s RatingPredictor to predict the user’s ratings

for the test items. The top-𝑁 metrics use the algorithm’s ItemRecommender to produce a

recommendation list. The candidate set, exclude set, and (if needed) set of ‘good’ items can

all be configured; a common configuration uses an exclude set of the user’s training items

and a candidate set of either all items or the user’s test items plus a random set of ‘bad’

items. We plan to add more metrics in the future.

Recommender evaluation is a subject of significant interest and research [GS09; Bel12].

The recommender systems research community is currently in the process of establishing

best practices for robust and reproducible recommender research, particularly for offline

experiments, where a diverse set of metrics and subtle variations in experimental protocols

make research results difficult to reproduce or compare [KA13]. One of LensKit’s aims is

to reduce this confusion and provide a standardized evaluation platform [Eks+11], a goal

67



3.8. Offline Evaluation

shared by the developers of other systems such as mrec10 and RiVal11. As the research

community develops consensus on best practices in experimental protocols and evaluation

metrics, we will be adjusting LensKit to use those best practices by default (although per-

haps not immediately, to provide a reasonable migration path for incompatible changes).

3.8.4 Improving Experimental Throughput

The train-test evaluator provides two important features for improving the throughput of

recommender evaluation.

The first is support for parallelizing evaluations. On multicore systems, LensKit can

run the evaluations for multiple algorithm configurations and/or data sets (within a single

train-test task) in parallel. It can run the evaluations all together, or isolate them by data set

(so that only one data set’s structures need to be loaded into memory at a time — this is

useful on low-memory systems or with very large data sets).

The second is the ability to identify and share common components between different

algorithm configurations. For example, the neighborhood size does not affect the item-item

similarity matrix in item-item CF; an experiment testing many neighborhood sizes will be

faster and take less memory if it computes the similarity matrix once and using it for all

experiments. LensKit automatically identifies the identical components of the configura-

tion graphs of different algorithm configurations and arranges for such components to be

computed once and shared. The caching logic uses Java’s soft references to share the same

in-memory representation of such components between all active algorithms that require

them, while allowing them to be garbage collected when no longer needed. If a cache di-

rectory is configured, the common components will be written to disk so that they do not
10https://github.com/Mendeley/mrec
11https://github.com/recommenders/rival/
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need to be entirely recomputed if they are garbage collected and then needed again. The

evaluator uses the same logic as the web integration support (section 3.9) to identify share-

able components.

With these two features, LensKit provides useful support for taking advantage of mul-

ticore shared-memory architectures for recommender evaluation.

3.9 Web Integration

Web server environments place particular requirements on the software that integrates with

them. Typical Java web application servers, such as Tomcat, handle each HTTP request in a

separate thread. When a request comes in, the request handler is started up; if it needs

database access, it opens a connection (typically from a connection pool), does the re-

quired processing, and returns the database connection to the pool. Some architectures

lease database connections to request handlers on an even shorter-term basis, such as once

for each database operation12.

With LensKit’s use of dependency injection, all dependencies must be available before

an object can be instantiated. For components that require database access, this means that

the database connection must be available to create the required DAOs, after which the

component itself can be instantiated.

A typical LensKit recommender algorithm will require both database access (to get the

user’s current ratings or interest profile) and model data (such as a factorized matrix) to pro-

duce recommendations. Rebuilding the model for each web request would be prohibitively

expensive; we would prefer to compute the model once, load it into memory, and share the

same model across all web requests. LensKit algorithms are designed for this: the model
12The Java drivers for MongoDB use this design.
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object is stand-alone and thread-safe. It is built by a separate builder component, and a

light-weight item scorer component combines the model and live data from the database to

produce recommendations.

To implement and use this functionality, however, the software must do several things:

• Identify the components to be shared.

• Instantiate the shared components.

• Arrange for the shared components to be used to satisfy the dependencies of the per-

request components.

It would certainly be possible to do this manually. However, that requires each algorithm

developer to provide code to accomplish this separation for their algorithm (which may not

work correctly for potential extensions of their algorithm), or for the application developer

to build and maintain code to instantiate shared objects for the algorithm they are using

(making it more cumbersome to change algorithms).

LensKit takes advantage of Grapht’s support for analyzing and manipulating object

graphs prior to instantiating them in order to provide implementation-independent support

for these tasks (chapter 4 describes the Grapht side of these capabilities in much more detail).

It takes a single description of the complete recommender component graph and identifies

the shareable objects. Shareable objects can be pre-computed, shared between algorithm

instances in multiple threads, and generally serialized to disk for use in other processes. It

then instantiates the shareable objects and creates a new dependency injection graph with

the pre-instantiated objects in place of their original configurations for use in later instanti-

ations of the recommender. This is encapsulated in the RecommenderEngine type.

The workflow therefore looks like this:
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1. Prepare a LenskitConfiguration describing the complete algorithm configuration. At

this point, the developer does not need to consider at all what components will be

shared and what ones will be reinstantiated.

2. Build a RecommenderEngine from the configuration, instantiating all shared compo-

nents.

3. For each web request, ask the recommender engine to create a Recommender, en-

capsulating a fresh recommender combining the model with whatever database con-

nections and other ephemeral resources are needed.

Build Container Recommender Container

Session Containers

Figure 3.4: Object containers in a LensKit web application13.

Figure 3.4 shows this in practice. Each configured object graph is encapsulated in a

container (Recommender is a container, as is RecommenderEngine). The per-request rec-

ommender containers reuse objects from the shared container in the engine, in addition to

the objects that must be isolated per request.
13Diagram by Michael Ludwig, published in [Eks+11].
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To designate a component for pre-instantiation and sharing, the algorithm developer

annotates it with the @Shareable annotation. Components with this annotation must be

thread-safe and should generally be Serializable. LensKit will pre-instantiate and reuse such

a component if and only if all of its dependencies are also shareable. This analysis means

that if a shareable component is configured so that one of its dependencies that is generally

shareable no longer is, it will automatically be downgraded to a non-shared component

without the developer needing to do any checking or enforcement.

LensKit also provides a @Transient annotation for dependencies to indicate that a par-

ticular dependency should not be considered when determining a components shareability.

If a component marks one of its dependencies as transient, it is promising that the depen-

dency will only be used to build the object, and the built object will not retain a reference to

it. For example, the item-item model builder’s dependency on the data source is marked as

transient, since it uses the data source to build the model but the final model is independent

of it.

The final result of these manipulations is that each web request instantiates a set of

lightweight objects that combine the current connection with heavyweight recommender

components to provide the recommendation services of the rest of the application. We have

successfully integrated this architecture with multiple web applications that are currently

used in production.

3.10 Comparison with Other Systems

There are many other recommendation toolkits available, commercial, freeware, and open-

source; section 2.4 listed some of them. Several of the open-source offerings now seem to

be inactive (COFI, jCOLIBRI), some are focused on particular recommendation techniques
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Feature LensKit Apache Mahout MyMediaLite
Platform Java Java C#/.NET

User-user CF Yes Yes Yes
Item-item CF Yes Yes Yes
Matrix factorization CF FunkSVD Yes Many
Distributed algorithms No Yes No
Visualization of configurations Yes No No
Algo-independent lifecycle separation Yes No No

Rating data support Yes Yes Yes
Implicit feedback support Partiala Yes Yes
Distinct data normalizations Yes No No

Offline evaluation Yes Yes Yes
Reuses shared components in eval Yes Nob No

aFinishing this is a high-priority project.
bCommon component reuse may be achievable manually.

Table 3.1: Comparison of recommender toolkits

(myCBR), and others are focused more on providing recommendation services in applica-

tions (EasyREC, PredictionIO) than on supporting research and cutting-edge recommender

system development or on particular integrations (e.g. RecDB [SAM13], providing recom-

mender services within a database).

LensKit’s most direct competitors are Apache Mahout and MyMediaLite. Apache Ma-

hout is a machine learning library with support for many different algorithms, including

several recommendation algorithms; it has extensive support for distributed computing

[SBM12; Sch+13]. MyMediaLite [Gan+11] is a recommendation toolkit for the .NET plat-

form (with good support for non-Windows systems via Mono) that has a particular focus on

providing state-of-the-art rating prediction and item recommendation algorithms.

LensKit sets itself apart with its extensive support for research activities and its support

infrastructure for connecting algorithms to evaluators and running applications. While we

are playing catch-up in some areas, particularly advanced matrix factorization algorithms
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and implicit feedback support, the algorithms and evaluations LensKit does are significantly

more flexible.

As discussed in section 3.7, LensKit algorithms are built from many discrete pieces that

can be replaced and recombined. This allows for extensive experimentation with distinct

choices for similarity functions, data normalization methods, neighbor selection algorithms,

etc., with very few limits on how they can be combined. Apache Mahout provides some

configurability of its algorithms — the item similarity function can be replaced, for instance

— but has relatively few configuration points; as near as we can tell, data normalization

needs to be built in to either the data model (so the algorithm sees normalized data) or

into each algorithm component itself. MyMediaLite supports reconfiguring algorithms via

subclassing.

LensKit’s evaluator is more flexible than either Mahout’s or MyMediaLite’s. Both Ma-

hout and MyMediaLite support measuring an algorithm’s performance on prediction accu-

racy or top-𝑁 metrics, but provide either a command line or a Java programmatic interface.

With Mahout, the programmer must provide recommender builders that build testable rec-

ommenders. LensKit’s ability to represent and analyze algorithms as entities allow it to

train and evaluate algorithms using the same mechanisms used to load algorithm models

for running applications, and basic evaluations read in a declarative fashion (evaluate of X

algorithms, Y data sets, with Z metrics). LensKit’s evaluator will also analyze the tested

configurations to automatically determine components that can be trained once and shared

between multiple configurations, providing a dramatic decrease in the cost of operations

such as finding the best neighborhood size without requiring any additional effort from the

programmer or researcher. LensKit also provides minimal entry points for new evaluation

components such as metrics, and can run arbitrarily many metrics in a single evaluation

pass; Mahout provides base classes to simplify writing new metrics, but the class embody-
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ing a metric (or suite of metrics) drives the evaluation.

LensKit also has advantages for building applications around the recommender. Its sup-

port for separating pre-built and runtime components mean that the recommender integrator

does not need to worry about what components can be precomputed and shared between

requests, and what components do not (unless they need to debug a configuration that is

not precomputing enough data): given an algorithm configuration, LensKit can instantiate

the pre-computable portion, save it to disk, and instantiate the needed runtime components.

All of this is in a configuration-independent fashion, so the recommender for an application

can be changed simply by replacing its algorithm configuration file.

A key enabler of LensKit’s lifecycle separation — as well as some of its evaluation

optimizations — is that it treats algorithm specifications as objects that can be manipulated

and analyzed. It can perform operations on a recommender algorithm or configuration itself,

not just the models and components that comprise it.

Finally, LensKit is built from a somewhat different philosophy. As we see it, MyMedi-

aLite and Mahout’s APIs are structured around the idea that ‘here is a recommender algo-

rithm, connect it to your data and use it’, with some options for configuration. LensKit is

structured around a large collection of pieces that can be wired together to make a recom-

mender, and a set of defaults and example configurations to put them together into common

types of recommenders. In addition to affecting the design of algorithms, this also manifests

in the public API: different recommendation services are provided by different components,

and not all configurations will necessarily provide all services.

Both philosophies have advantages and disadvantages. It is currently easier to take Ma-

hout or MyMediaLite off the shelf and get recommendations from it than it currently is

with LensKit, but once LensKit is running it provides more built-in reconfigurability and

flexibility in its algorithm components. It is possible to adapt Mahout or MyMediaLite
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to a variety of configurations for research and experimentation, but LensKit provides the

implementations and configuration infrastructure necessary to test many different variants

out-of-the-box. We are, however, working on solving the getting-started problem through

improved documentation, more example code, and simplified wrapper APIs.

3.11 Usage and Impact

Since we originally published LensKit in 2011 [Eks+11], it has seen use in several research

projects. In our own research, we have used LensKit for the algorithmic analyses in the

rating interface experiments we have run [Klu+12; Ngu+13], as well as the research de-

scribed in the remainder of this thesis. Google Scholar records a total of 27 citations of

the core LensKit paper [Eks+11]14. LensKit also provides the recommendations for several

live systems:

• MovieLens, operated by GroupLens Research, provides movie recommendation and

tagging services. URL: http://www.movielens.org

• BookLens, also operated by Grouplens, provides book recommendations integrated

with library card catalogs. URL: http://booklens.umn.edu

• Confer, from MIT CSAIL, is an online conference program site that uses LensKit to

recommend papers for conference attendees to see and other attendees that they may

wish to meet. URL: http://confer.csail.mit.edu/

From time to time, someone will post on the LensKit mailing list with a question about

using LensKit in some new environment, and there are also likely other uses that we have

not heard about.
14http://scholar.google.com/scholar?oi=bibs&hl=en&cites=14771795286610726161
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Our MOOC on recommender systems (Introduction to Recommender Systems on Cours-

era) used LensKit as the basis for its programming assignments; we had 800–1000 users

complete the programming assignments.

LensKit is also regularly brought up in discussions about reproducible recommender

systems research. We encouraged the recommender research community to adopt a cul-

ture of publishing code built and tested against accepted, publicly-available recommender

platforms to support new recommender algorithm and evaluation research. While this has

not yet been established as a general norm, there is increasing interest in reproducible re-

search and best practices for comparable recommender research, which is an encouraging

sign. It will take the community time to establish best practices for evaluating recommender

research, and the conversation seems to be going in profitable directions.
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Chapter 4

Supporting Modular Algorithms

M    — LensKit included — comprise many components that

work together to provide the system’s functionality. Individual components seldom operate

alone; many of them depend on other components to fulfill their responsibilities. In the last

twenty years, the dependency injection (DI) pattern has seen wide adoption as a means of

fitting together the components of such systems, and we have adopted it for designing and

configuring LensKit’s recommender implementations as described in section 3.7. Unfortu-

nately, LensKit’s needs are not well-served by existing dependency injection toolkits. The

first versions of LensKit used Google Guice for instantiating algorithms; when it proved in-

adequate, we tried using PicoContainer, which was also a poor fit. We finally wrote Grapht,

a dependency injection toolkit for Java, to manage LensKit’s dependency injection with a

new set of configuration and graph processing capabilities.1

Our work on dependency injection has been driven by two specific shortcomings with

other toolkits with respect to LensKit’s needs:

• Limitations on configuration that severely hinder the composeability of components.

Most toolkits to not deal well with the same class or interface appearing in many

places in the object graph with different implementations or configurations, and the

tools they do provide for such scenarios are weak. This means components cannot be
1 Michael Ludwig contributed significantly to the work in this chapter, particularly refining the design

and writing the initial implementation. We are preparing this work to submit for publication.
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freely reused and composed, but need to be wrapped in extra classes that know about

how they fit into the final object graph.

• Inability to construct and process the object graph as a first-class object prior to instan-

tiation made it difficult — if not impossible — to provide robust support for detect-

ing & reusing common components in experiments, separating prebuilt and run-time

components, and providing diagnostic and debugging support for algorithm configu-

rations.

Grapht addresses both of these concerns: the first through context-sensitive policy, al-

lowing objects to be configured based on where they are used, and the second by decoupling

dependency resolution from object instantiation and exposing the resolved object depen-

dency graph as an object that can be analyzed and manipulated. Grapht’s internal archi-

tecture is built on this object graph abstraction and many of its features are implemented

in terms of graph transformations; this has the side effect of making it amenable to formal

treatment. We use a formal model of dependency injection — a abstraction of Grapht’s

design — to describe the key algorithms and to show that certain commonly-used depen-

dency injection features are technically superfluous, replacable with strictly more expresive

alternatives.

4.1 Dependency Injection

Dependency injection [Fow04; YTM08] is a design pattern arising from applying Inversion

of Control to the problem of instantiating objects that have dependencies on other objects. If

a component A requires another component B in order to fulfill its obligations, there are sev-

eral ways that it can obtain a suitable reference. A can instantiate B directly (listing 4.1(a));

this is straightforward, but makes it difficult to substitute alternative implementations of
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public UserUserCF() {

similarity = new CosineSimilarity();

}

(a) Direct instantiation

public UserUserCF(SimilarityFunction sim) {

similarity = sim;

}

(b) Dependency injection

Listing 4.1: Constructors depending on another component.

B. A can also obtain B from some other service, like a factory or service locator, allowing

alternative implementations to be used but making A dependent on the resolution strategy.

Finally, in dependency injection, A can require B to be provided via a constructor argument

(listing 4.1(b)). That is, the dependency (B) is injected into A. Whatever component creates

A is therefore free to substitute an alternate implementation or reconfigure B in any way it

wishes.

When used throughout the design of a system, dependency injection (DI) provides a

number of advantages. Most follow from reduced coupling between components. Some of

these advantages include:

• Components are free of all knowledge of the implementations of their dependencies

— they do not even know what classes implement them or how to instantiate them,

only that they will be provided with a component implementing the interface they

require.

• Components can be reconfigured by changing the implementations of their depen-

dencies without any modification to the components themselves.
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(a) Class diagram
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(b) Object diagram
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(c) Shape legend.

Figure 4.1: Class dependencies, object graph, and legend.

• Components can be more easily tested by substituting mock implementations of their

dependencies. While mocking is not new, the component design encouraged by de-

pendency injection makes it particularly easy to substitute mock objects.

• Each component’s dependencies are explicit, appearing as formal arguments of the

constructor setup and initialization methods, so the component’s interaction with the

rest of the system is largely self-documenting. This can make the system easier to

understand and more amenable to static analysis.

The reduced coupling and increased flexibility of dependency injection comes with a

cost: in order to instantiate a component, its dependencies must be instantiated first and

provided via a myriad of constructor parameters. This requires the code initializing a com-

ponent to know its dependencies, construct them in the proper order, and pass them in to

the constructor. Doing this manually, while possible, is cumbersome.

To make it easier to configure and instantiate software built around dependency injec-

tion, a number of toolkits called dependency injectors or DI containers have been devel-

oped. These toolkits take care of resolving the dependencies of the various components in

a system, instantiating them in the proper order, and wiring them together. This automated

support for dependency injection is sometimes called autowiring.

An autowiring DI container’s task is to instantiate and connect a graph of objects that
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will realize the application’s functionality. This often takes the form of instantiating some

root component along with its dependencies. Figure 4.1 shows an example; the DI container

is responsible for transforming class A along with its dependencies ((a)) into a graph of

objects ((b)).

To accomplish this task, the container must typically do three things:

1. Identify the dependencies of each component.

2. Find an appropriate implementation for each dependency.

3. Instantiate the final object graph, providing each component to its dependencies.

These tasks can be performed together, identifying and resolving dependencies lazily in

response to object instantiation requests, or with a phased approach in which a dependency

solution or instantiation plan is computed as an object in its own right and passed to a

separate component to perform instantiation.

The DI container typically extracts dependencies directly from component class defini-

tions using reflection or static code analysis. It generally uses reflection or code generation

(either at run time or compile time) to instantiate the components. Both of these capabili-

ties are dependent on the capabilities of the language and environment that the DI container

targets; we discuss how Grapht performs these tasks in more detail in section 4.4.

4.2 Related Work

Dependency injection has seen significant use for at least ten years, with numerous toolkits

providing automated support for it. In this section, we survey research literature and existing

software packages relating to dependency injection.
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4.2.1 Prior Research

Despite widespread use of dependency injection by the software development community,

we have been able to find little treatment of the subject in the research literature. Yang,

Tempero, and Melton [YTM08] empirically studied the prevalence of its use, and Razina

and Janzen [RJ07] studied its impact on maintainability measures such as coupling and

cohesion. DI has also been shown to be effective for configuring game components [Pas+10]

and connected with aspect-oriented programming [CI05], but there does not seem to be

much other published research on dependency injection since Fowler [Fow04] provided its

modern formulation. In particular, there has been little treatment of the core principles of

dependency injection, the facilities needed for effectively supporting it, and effective models

for reasoning about its capabilities, limitations, and potential extensions.

Some work on component instantiation anticipated aspects of dependency injection.

Magee et al. [Mag+95] describe the Darwin notation for describing software component

wiring; it is formalized in terms of the 𝜋-calculus, and seems amenable to static analysis,

but required the entire system component graph to be explicitly specified.

4.2.2 Existing DI Containers2

There are many dependency injection containers available for Java and the .NET platform.

These runtimes support reflection and generally target statically typed languages, making

type-safe runtime dependency injection easier. JSR 330 standardizes dependency annota-

tions and behavior for DI containers in Java, and most Java DI containers are adding JSR

330 support if they do not have it already. JSR 330 itself is based heavily on the design of

Google’s Guice DI container; Spring and PicoContainer are also used significantly in Java

applications and have implemented JSR 330.
2Michael Ludwig conducted the survey of existing implementations.
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Spring is an expansive application framework, providing tools for web development,

aspect-oriented programming, and dependency injection, among other things. Early ver-

sions of Spring used XML descriptions of the complete object graph for dependency pol-

icy. Although verbose, this is a powerful way of configuring dependencies and can achieve

the same results context-sensitive configuration. Spring has more recently been updated to

support the JSR 330 annotations and automatically configure certain types. Although IDE

support for statically analyzing Spring configurations exist, the dependency solution graph

is not a first-class entity in Spring’s IoC framework, making it difficult to do static analysis

of object configurations.

Guice and PicoContainer function similarly from a high level. Both provide a Java API

to specify dependency configuration and lazily resolve dependencies while instantiating ob-

jects (with the consequence that there is no pre-computed dependency plan). They provide

hooks that can intercept and record the dependency solution as its being discovered, and

tools exist that use this to produce static dependency graphs. Since this instrumentation

is limited to operating while objects are being instantiated, however, it does not allow the

solution graph to be statically computed and analyzed before instantiating objects. Guice

also supports extensive defaulting (called just-in-time injection), looking up default imple-

mentations from Java annotations; PicoContainer requires all component implementations

that will participate in injection to be explicitly described.

Guice, Spring, and PicoContainer all provide support for integrating with web frame-

works in various ways, so that the framework uses the DI container to instantiate the request

handlers and other objects. Related to this is the support for scopes and annotations to spec-

ify them, controlling whether an object is instantiated for each request, session, or shared

over the server’s lifetime. All 3 provide support for scopes, although PicoContainer imple-

ments them differently. Finally, some containers also provide support for lifecycle manage-
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ment, starting and stopping objects to release external resources in addition to instantiating

them.

Outside the Java ecosystem, Ninject [Koh12] provides similar DI services for .NET.

Ninject supports both just-in-time binding and context-sensitive binding with an elegant

API that avoids the verbosity of Spring’s context-sensitive solutions. In Ninject, bindings

are provided the injection context and can invoke an arbitrary boolean function to determine

if it matches. When instantiating or “activating” objects, Ninject proceeds in a lazy fashion

like Guice, allocating new instances as necessary to satisfy the parameters of a required

instance. As far as we know, Ninject does not provide any support for static analysis or

manipulation of object graphs.

Table 4.1 summarizes the Java container implementations we have discussed. Although

each of these is fully capable and useful as a general DI container, none of the examined

implementations cleanly supported the three key features we desired for meeting our goals

for LensKit. We do note that Grapht does not completely cover their functionality; to date,

we have focused on developing the capabilities that LensKit requires. It is certainly feasible

to implement many of these features on top of Grapht, but it has not yet been a priority.

4.3 Requirements

Grapht’s requirements are derived from JSR 330, the common specification for Java de-

pendency injectors; the behavior of other DI containers; and the needs of LensKit. We are

not interested in needlessly inventing new APIs, and have been pleased overall with the pro-

grammatic interface and behavior of Guice’s basic functionality. We adopt its paradigm and

terminology for configuring the DI container, simplifying and extending it to meet LensKit’s

particular requirements. This should aid the transition for developers already familiar with
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Guice Spring PicoContainer Grapht

Configuration Java XML Java Javaa

Static Analysis # # # !

Context-sensitive Policy # Hard # !

Just-in-Time Binding ! ! # !

Scope Annotations ! ! #

Web Framework Integration ! ! ! #b

Lifecycle Support # ! ! #c

aLensKit provides additional support for Groovy-based config files.
bIt is easy to integrate Grapht with some frameworks, but we do not provide any out-of-box support. The

Grapht wiki does provide a snippet for integrating with Play.
cWe plan to add lifecycle support to Grapht before releasing LensKit 3.0.

Table 4.1: Summary of DI Containers

Guice (or another toolkit), as much of their knowledge will transfer. Many of the capabili-

ties described in this section are also standard behavior for DI containers; context-sensitive

policy and first-class object dependency graphs are the new requirements that we impose.

4.3.1 Basic Policy

In order to instantiate an object graph, the DI container must know what classes should be

instantiated to satisfy each dependency. For example, to instantiate a LensKit recommender,

it needs to know what implementation of ItemScorer should be used.

If all the dependencies in question are concrete classes (as in Fig. 4.1(a)) or the runtime

environment has no concept of interfaces or polymorphism, then resolving dependencies is

simply a matter of looking up the constructor for each dependency.

If there are multiple implementations of component interfaces to choose from, the DI

container needs some form of dependency policy [Mar96] to determine which implemen-

tation to use to satisfy each dependency. Figure 4.2 shows a simple class diagram where

a dependency policy is necessary; interface I has two implementations C1 and C2. When
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..A. I.
C1

.
C2

(a) Class diagram

..A. C1.

A

.

C2

(b) Potential object graphs

Figure 4.2: Interface with multiple implementations.

instantiating A, the injector needs to know which implementation to use to satisfy the de-

pendency on I; both graphs in Fig. 4.2(b) are valid solutions, and which one is desired may

depend on many factors.

Policy can be provided by fully specifying the object graph, e.g. in an XML file. It can

also be defined by bindings from component types (typically interfaces or abstract classes)

to concrete classes implementing those types; this is the approach used by Guice and Grapht.

To produce the top graph in fig. 4.2(b) from fig. 4.2(a), the binding I ↦ C1 would be used;

the binding I ↦ C2 produces the bottom graph.

It is also useful to be able to bind interfaces directly to pre-instantiated objects or to

providers. A provider is a component with a single method, get(), that returns the object

to be injected; when provider bindings are supported, the provider can either be specified

by class (in which case the injector resolves the provider’s dependencies and instantiates it

like it would any other component) or by binding to a provider object. A DI container can

also support a mix of binding-based and specified-graph policy, allowing an interface to be

bound to a specified subgraph, which may in turn have unresolved components that must

be resolved using binding-based policy.

One final source of dependency policy is just-in-time dependency resolution. With just-

in-time resolution, concrete classes are injected without requiring configuration and inter-

faces can carry annotations specifying their default implementation. Supporting just-in-

time resolution is important to enable the extensive automation and defaults that we desire
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(c) Example object graph

Figure 4.3: Component with qualified dependencies (indicated by edge labels).

from the DI container; many of LensKit’s interfaces have annotations specifying default im-

plementations to minimize the configuration work required to get a working recommender.

Explicit bindings override just-in-time resolution decisions. Bindings and defaults com-

plement each other well, and together provide a good deal of flexibility for refactoring and

revising components. Classes can be redesigned to introduce new intermediary compo-

nents, or to change what class uses some dependency; so long as the key reconfigurable

interfaces remain, these changes do not have to break application configurations.

4.3.2 Qualifiers

Type information is not always sufficient to describe a component’s dependencies. There

are cases, such as that shown in Fig. 4.3, where the same component interface is used in

different roles and the desired configuration will use different implementations in each of

these roles. To accommodate this, JSR 330 defines qualifiers, annotations added to injec-

tion points or dependency declarations to provide additional information to the dependency

resolver and allow the policy to specify different implementations for the same interface in

different settings3. In Fig. 4.3(c), component type B is bound to different implementations

in the left and right positions.
3Similar concepts are applicable in other environments as well; any mechanism for associating additional

metadata with a component’s dependencies can be used to implement qualifiers.
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..A. I.
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(a) Class diagram

I ↦ W
(@Wrapped,I) ↦ C

(b) Bindings

..A. W. C

(c) Object graph

Figure 4.4: A wrapper component. W implements I by wrapping another component of type I, in
this case C.

Another use of qualifiers is to enable wrapper components to be created. As shown in

fig. 4.4, these components implement an interface by wrapping another component of the

same interface. The wrapper annotates its dependency on the wrapped component with a

qualifier so the policy can distinguish between the primary binding (interface to wrapper)

and the wrapped binding (qualified qualified interface to implementation). Wrappers are

used extensively in LensKit to allow data pre- and post-processing to be decoupled from

more fundamental computation.

In LensKit, these two needs combine when we want to configure a hybrid component.

Figure 4.5(a) shows the constructor for a hybrid item scorer that computes a linear blend

of two other scorers (𝑠(𝑢, 𝑖) = 𝑤𝑠left(𝑢, 𝑖) + (1 − 𝑤)𝑠right(𝑢, 𝑖)). Qualifiers allow the left

and right scorers to be configured differently, and to be configured separately from the main

item scorer. Figure 4.5(b) shows bindings that will configure the blending item scorer to

be the primary item scorer, and set it up to blend the results of user-user and item-item CF

with equal weight.

4.3.3 Context-Sensitive Policy

While qualifiers allow dependency policy to be conditional on annotations indicating how a

dependency is going to be used, they have limitations when applied in larger object graphs.

In Fig. 4.6(a), A has two qualified dependencies on I1. Unlike the case in Fig. 4.3 where we
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public class BlendingItemScorer implements ItemScorer {

@Inject

public BlendingItemScorer(@Left ItemScorer left,

@Right ItemScorer right,

@BlendWeight double weight) {

}

/* ... */

}

(a) Constructor with dependencies

bind ItemScorer to BlendingItemScorer

bind (@Left,ItemScorer) to ItemItemScorer

bind (@Right,ItemScorer) to UserUserItemScorer

bind (@BlendWeight,Double) to 0.5

(b) Configuration

..Blended. IS.

ItemItem

.

UserUser

.

Root

.

@Left

.

@Right

. Root. Blended.

ItemItem

.

UserUser

.
@Left

.

@Right

(c) Class and object diagrams

Figure 4.5: Hybrid item scorer.

want to use different implementations of I1 for the left and right components, in this example

we want to use the same implementation with different configurations for its dependency on

I2. In LensKit, this would arise if we wanted to adapt fig. 4.5 to blend two ItemItemScorers

with different configurations instead of two different item scorer implementations. A similar

problem arises, perhaps more naturally, if we want to use the baseline subtracting normalizer

in two places subtracting different baselines.

Context-sensitive bindings allow these kinds of graphs to be configured. A context-

sensitive binding is only activated in certain portions of the object graph: in this case, the

bindings for I2 depend on whether they are being used to satisfy some (transitive) depen-
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(b) Desired object graph

⊢ I1 ↦ B
(@Left,B) ⊢ I2 ↦ C

(@Right,B) ⊢ I2 ↦ D

(c) Bindings

Figure 4.6: A dependency graph requiring context-sensitive policy. 𝑋 ⊢ 𝐼 ↦ 𝐶 denotes that 𝐼 is
bound to 𝐶 only when satisfying dependencies of 𝑋.

dency of the left or the right B component. These bindings depend on the context of the

dependency, a path through the dependency graph from the initially-requested component

to the component whose dependency is to be satisfied.

The fundamental problem solved by context-sensitive policy is that dependency solu-

tions guided only by type- and qualifier-based policy lack composability. B can be con-

figured in two different ways, but qualifiers do not have sufficient expressiveness to al-

low those two different configurations to be used as subgraphs of a larger object graph.4

Allowing bindings to depend on context increases their expressiveness and allows more

complex object graphs to be described by bindings without needing to resort to providers,

pre-instantiated instances, or explicit descriptions of subgraphs.

We show in section 4.6.4 that qualifiers can be replaced with additional types and cou-

pled with context-sensitive policy to achieve the same results as qualifier-based policy.

Thus, context-sensitivity is a more general solution to the same set of problems as those
4Technically, any graph can be configured by binding to pre-instantiated objects, providers, or speci-

fied subgraphs. We find such graph specification to be cumbersome, and unnecessary use of instances and
providers can hinder static analysis.
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solved by qualifiers. We continue to use qualifiers because they are specified by JSR 330

and because they are syntactically convenient.

In LensKit, we generally use qualifiers to differentiate multiple dependencies on the

same type in a single component (as in the hybrid situation), and with primitive types to

define parameters such as neighborhood sizes. We occasionally use them to identify a par-

ticular role that a component plays, such as the @UserSimialrityThreshold qualifier applied

to some dependencies on Threshold to indicate that the threshold will be used to threshold

user similarities, making it easy to configure a single threshold to be used everywhere user

similarities are thresholded.

4.3.4 Subtype Binding

Components are not limited to implementing a single interface. Interfaces can extend and

refine other interfaces, and components can implement multiple distinct interfaces. In

LensKit, this is frequently the case for data access objects: the JDBC-backed DAO, for

instance, implements all of the standard DAO interfaces (section 3.5) in a single object. We

also encourage application code to extend our DAOs — while this is not necessary, it is

common for an application that exposes additional information about items, for example, to

do so by extending ItemDAO with methods like getItemTags(long).

Naïvely, using the JDBC DAO for all data access would require a separate binding for

each DAO interface. We want the DI container to have reasonable behavior with respect to

the subtypes and supertypes of the interface and class explicitly involved in a binding. By

‘reasonable’, we mean that we want the behavior to provide useful capabilities or conve-

nience while adhering to the Principle of Least Surprise (a subjective standard, but helpful

as a guiding principle). We do not want spurious and confusing bindings to arise from

straightforward policy statements.
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Figure 4.7: Class graph with subtypes

Consider the class diagram in fig. 4.7, where there are two interfaces and A depends

on I1, while B depends on the more specific I2. For convenience, we would like the single

binding I1 ↦ C, or even I2 ↦ C, to satisfy both dependencies. Requiring both bindings to be

explicitly specified would increase both maintenance burden and the difficulty of figuring

out exactly what binding rules are needed when building a configuration. However, either

decision should be overrideable; if there explicit bindings I1 ↦ C and I2 ↦ E, C should not

be used to satisfy B’s dependency. Also, a binding I1 ↦ D should clearly not satisfy B’s

dependency, as B requires a I2.

The particular policy we have devised is as follows:

1. Explicit bindings always take priority.

2. The binding A ↦ B should be treated as if it also bound every type that is a supertype

of A, or a supertype of B and subtype of A, to B, unless such a binding (called a

generated binding) conflicts with an explicit binding.

In the case of the JDBC DAO, we simply bind the DAO type to itself, producing gener-

ated bindings for all of its interfaces.
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4.3.5 First-Class Object Dependency Graphs

To implement the various features that arise from LensKit being able to treat algorithms

as first-class, manipulable objects — automatically identifying shareable components for

reuse or prebuilding, diagramming configurations, etc. — we need the dependency injector

to provide access to the object graph. This should ideally happen without instantiating any

objects, as some objects are very expensive to instantiate.

This can be achieved by separating dependency resolution from object instantiation. If

the dependency injector first resolves the dependencies, building up a graph of the concrete

classes, providers, and instances that it will use to assemble the final object graph, and then

instantiates objects according to this plan, then the plan can be analyzed and modified in

the middle.

4.3.6 Non-Requirement: Circular Dependencies

Many DI containers support circular dependencies among components, and JSR 330 man-

dates this capability. Grapht has optional support for circular dependencies in order to

comply with the JSR and pass its compatibility tests, but LensKit disables this support.

There are a variety of reasons that it is good to avoid circular dependencies:

• Instantiating circular dependencies is awkward, as objects need to be able to be par-

tially initialized and passed to each other before initialization is complete.

• Because objects can obtain references to partially-initialized objects during the in-

stantiation process, there is greater opportunity to misuse objects (invoke methods

on them before initialization is complete). In the absence of circular dependencies, a

reference to an object is only made available to other components once the object is
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fully instantiated and initialized, so it is impossible for this particular type of runtime

error to occur.

• Circular dependencies can often be factored out, resulting in more loosely-coupled

class design. This can be done by either injecting both components into a third that

mediates their interaction, or injecting a common component into each of the formerly

mutually-dependent components; this would be done, for instance, when refactoring

components built on the observer pattern to use a publish-subscribe event bus instead.

In Java, and many other environments, circularly dependent components cannot be in-

stantiated if their dependencies are only expressed via constructor parameters. The cycle

must be broken either by having some dependencies injected into fields or setter methods,

or by injecting providers of required components rather than the components themselves at

some point in the cycle. In both cases, the components must allow for the circular depen-

dency in their design, either by depending on a provider or by exposing dependencies via

fields or setters.

4.4 Implementation of Grapht

Grapht is our open-source Java dependency injector. It is compatible with JSR 330 [JL09]

and passes its TCK, so it can be used as a replacement for existing containers in many situ-

ations. The code base is less than 5000 lines of Java, excluding tests; its multi-phase design

and graph-based approach have enabled us to build a simple, clean implementation that

provides the features we require and many of the features generally expected of dependency

injectors. There are a number of features provided by other systems such as Guice that we

do not yet provide, mostly because we have not yet needed them, but most of them should

not be difficult to implement on top of Grapht’s architecture if they are ever needed.
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 Resolving and Instantiating

Figure 4.8: Simplified instantiation sequence diagram.

4.4.1 System Overview

Grapht’s design revolves around constructing and using a graph of objects to instantiate.

This graph represents the graph of objects that will result from the dependency injection

operation.

Figure 4.8 shows the high-level components that work together to resolve and instanti-

ate an object. The application (far left) requests an instance of a class, and the remaining

components (all part of Grapht) work together to do the following:

1. Resolve the class to an implementation.

2. Recursively resolve its dependencies.

3. Simplify the graph to identify shared components.

4. Instantiate the object.

The following sections describe in more detail how these different components work.

96



4.4. Implementation of Grapht

4.4.2 Desires, Satisfactions, and Dependencies

Grapht uses a pair of abstractions for representing requests for components and the imple-

mentations that will be used to satisfy them. A Desire is an abstraction of a component

request, generated by either the application or the dependencies of another component. It

encapsulates the type of the desired component, its qualifier, and other attributes that may

be associated with a dependency. For desires that arise as the dependencies of other com-

ponents, the desire also keeps track of the constructor or setter parameter that generated it,

primarily for debugging and diagnostic purposes.

Desires are resolved to Satisfaction objects, abstracting a means of instantiating or ob-

taining an object that will satisfy the desire for a component and the dependencies required

to instantiate such an object. Satisfactions have two primary operations: they can report

their dependencies (as a list of desires), and can create a component instantiator given a

map from the satisfaction’s dependency desires to instantiators of the required components.

Grapht implements several types of satisfactions, corresponding to the different types

of binding policy targets discussed in section 4.3.1:

ClassSatisfaction instantiates a class, depending on the dependencies extracted from the

class’s injection points.

InstanceSatisfaction provides a pre-instantiated object and never has dependencies.

ProviderSatisfaction uses a pre-instantiated Provider object to produce instances, and never

has dependencies.

ProviderClassSatisfaction instantiates a Provider class, extracting dependencies from the

provider’s injection points. It instantiates the class just like ClassSatisfaction, and
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then invokes the resulting provider object’s get() method to obtain the instance of the

desired component.

NullSatisfaction is a special case of InstanceSatisfaction that returns null and contains extra

book-keeping data needed to track the type of component that is not being returned.

A desire can have a satisfaction associated with it. Such a desire can be instantiated

as-is without further resolution, although it may yet be resolved to a different satisfaction.

As Grapht is built to be JSR 330-compliant, the satisfaction implementations use the

Java reflection API and the annotations defined by JSR 330 to identify injectable classes and

their dependencies. It can inject dependencies into constructor parameters, setter methods,

and fields; we prefer constructor and setter injection, but field injection is available for

compatibility with other DI containers.

JSR 330 defines an annotation @Inject that is used to identify constructors, setters, and

fields that participate in dependency injection. A class can be instantiated as a component

if it has a no-argument constructor or a constructor annotated with @Inject. The arguments

of that constructor, along with the arguments of all @Inject-annotated setters and fields, are

taken as the component’s dependencies. Qualifiers are also specified as Java annotations;

any annotation that is itself annotated with @Qualifier (also defined by JSR 330) can be

used as a qualifier.

Satisfactions that instantiate classes (ClassSatisfaction and ProviderClassSatisfaction)

scan the constructors, methods, and fields of their classes they encapsulate to determine all

the dependencies and encapsulate them in desires.
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4.4.3 Resolving Desires and Dependencies

The dependency solver is responsible for taking a description of a root component, deter-

mining how to instantiate it, and recursively building an instantiation plan for each of its

dependencies. The dependency resolution logic itself is separated from the messy details

of Java reflection, keeping it relatively self-contained and clean.

At a high level, the dependency solver operates as follows:

1. Determine the satisfaction for the current desire.

2. Recursively build graphs for each of the satisfaction’s dependencies.

3. Create a graph whose root is labeled with the current desire’s satisfaction, with out-

going edges to the subgraphs of for the dependencies.

The dependency solver uses a list of binding functions (together representing the config-

uration policy) to resolve each desire to its appropriate satisfaction. The internals of these

binding functions are described in sections 4.4.5 and 4.4.6, but they interface they expose to

the dependency solver consists of a single method, resolve, that takes a desire and a context

and returns the resolution of that desire. The resolution is itself another desire, which may

be subject to further bindings.

The dependency solver scans through the list of binding functions, looking for one that

can supply a resolution for the current desire. Once it has found a resolution, it scans again to

see if any binding functions have a binding for the desire produced by the previous round.

This is repeated until no binding functions produce new resolutions for the desire, or a

binding function indicates that its result should not be subject to further re-binding.5 The
5Bindings to pre-instantiated instances and to providers are not subject to re-binding. This decision may

be revisited in the case of bindings to provider classes.
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iterative resolution algorithm allows policy to specify specify that some class should be used

to implement an interface, and then separately specify how that class should be instantiated.

If no resolution can be found for a desire, then the dependency solver raises an error un-

less the desire is optional. Optional desires arise from dependencies annotated with @Nul-

lable; in this case, Grapht produces a solution that satisfies the desire with a null reference.

The list of binding functions typically consists of one or more rule-based binding func-

tions, containing the bindings from the application-specified policy at different levels of

precedence, followed by a binding function that looks up defaults.

The dependency solver maintains a desire chain when resolving any component request

or dependency. The desire chain is the sequence of desires that have been encountered

in resolving that component. In the initial pass through the binding functions, it will be

a singleton list containing the initial desire; each subsequent pass will have another desire

appended to the chain. Binding functions receive the entire chain, not just the current desire;

this allows them to modify their behavior based on whether they are matching an initial

desire or the result of a previous binding function, and the rule-based binding function uses

the chain to ensure that no rule is applied twice in the same chain (to avoid infinite loops).

The dependency solver produces its graph in a two-step process. First, it resolves all

dependencies directly, producing a tree of satisfactions: if the same component is used in

two places, it produces two graphs. It then asks a MergePool to simplify the graph. The

merge pool uses a dynamic programming algorithm (described in section 4.6.2) to identify

identical component subgraphs and coalesce them, producing a graph that has exactly one

vertex for each unique component configuration (a satisfaction applied to a unique set of

dependencies). The final graph, therefore, represents each object that could possibly be

shared between components requiring it as a coalesced subgraph. Whether or not the ob-

ject is actually shared is determined by a caching policy, but the graphs produced by the
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dependency solver capture all possible sharing.

4.4.4 Representing Graphs

Grapht represents object graphs (instantiation plans) as rooted DAGs whose vertices are

labeled with Component objects. A component consists of a satisfaction and any additional

configuration related to instantiating the component. Currently, that additional information

consists of the caching policy, specifying how instances of that component are to be reused:

either memoize, always reinstantiate, or use the default policy configured on the injector or

instantiator. This allows a global object reuse policy to be configured but overridden on a

component-by-component basis as needed.

The edges of the constructor DAG are labeled with Dependency objects. A dependency

encapsulates the desire chain that was followed to resolve that dependency, along extra flags

or configuration relevant to that dependency edge to support extra features. This extra in-

formation currently consists of flags that control Grapht’s graph rewriting capabilities (not

described here).

4.4.5 Representing Bindings

The primary binding function implementation used in Grapht is RuleBasedBindingFunction,

a binding function that is based on a set of individual bindings (bind rules, in Grapht’s

internal terminology). A bind rule has two responsibilities:

• Determining whether or not it matches a desire.

• If it matches a desire, returning its target: a desire (often with an associated satisfac-

tion) encapsulating the type or object to which the matched desire has been bound.
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The rule-based binding function manages the bind rules along with the contexts in which

they are active, identifying and selecting an appropriate rule (if any) when each component

request comes in.

There are several complicated design decisions in determining how to select an appro-

priate bind rule. Our guiding principle in making these decisions is to attempt to define

behavior that provides the least surprising results. This is a somewhat subjective standard,

we admit. However, there is significant prior art in dependency injection that we can look

to for guidance: we aim to have similar behavior as Guice unless there is a clear reason to

diverge. We also draw from our own experience developing and using LensKit and other

software built on dependency injection to identify the kinds of configurations that may need

to be expressed to meet non-degenerate requirements and attempt to design the rules to al-

low such configurations to be expressed in a clear but concise fashion.

Rule Matching

Whether a bind rule matches is determined by the type and qualifier (if any) of the desire

being matched, and the context in which the desire arises. The bind rule has a type (the type

on the left hand side of the bindings in section 4.3.1) and a qualifier matcher to determine

this match, and the binding function associates it with a context expression identifying the

contexts in which it is active.

The bind rule matches if its type is the same as that of the desire (subtyping is handled by

emitting multiple bind rules, discussed later) and the qualifier matcher matches the qualifier.

The following qualifier matchers are defined:

• A, matching any qualifier (including the absence of a qualifier).

• N, matching only unqualified dependencies.
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• C(𝜏), matching any qualifier of type 𝜏. Java annotations are objects and can

have types, just as any other object.

• V(𝑞), matching only qualifiers equal to 𝑞.

• D, matching 𝑞⊥ and any qualifier whose defining annotation type indicates that

it should be matched by default. This is allow applications to define qualifiers that

can be targeted by specific bindings but, in the absence of such a binding, should fall

back to whatever implementation would be used for that dependency if it were not

qualified.

If a qualifier is not specified when a binding is configured via the API, the D

matcher is used. We do not use value matchers very much, as the qualifiers we define and

use tend not to have any parameters (so all instances of a particular qualifier annotation are

equal to each other). Some qualifiers do define parameters, however, such as the @Named

qualifier provided by JSR 330 as a light-weight way to qualify dependencies with arbitrary

names.

Contexts are represented as paths from the root of the object graph to the component

whose dependency is being resolved by the current desire; each element of the path consists

of a qualifier and a satisfaction. Context expressions are regular expressions that match

contexts in which the associated bind rules should be considered.6 Each atom in the ex-

pression consists of a qualifier matcher and a type; unlike the types on bind rules, the type

in a context expression atom matches any satisfaction producing a component of that type,

including subtypes.
6We do not yet implement the full semantics of regular expressions, as we have not yet needed either to

support our primary API or any use cases we have encountered. A future version of Grapht will likely include
full regular expression support for completeness.
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Selecting a Rule

The rule-based binding function tests all bind rules whose context expressions match the

current context. If only a single rule matches, then it returns the result of that rule.

If more than one rule matches, it must determine which rule to use. This is determined

by a concept of specificity: the most specific binding is used.

Specificity is determined first by the binding’s qualifier matcher. N and V

matchers are considered the most specific, followed by C, followed by A, and lastly

D. A is more specific than D since it must be explicitly applied, and there-

fore reflects a more specific intent on the part of the application developer.

If multiple bindings with the same qualifier matcher match the dependency, the binding

function considers the specificity of their context matches. This specificity is determined

as follows:

1. For each element in the context, construct a priority for the match of that element.

Wildcard matches have the lowest priority, followed by negated matches. Matches of

an atom (a type and qualifier matcher) are prioritized based on the qualifier matcher

priority7 followed by type distance, with lower type distances having higher priority.

The type distance is the number of types between the component type produced by a

satisfaction and the type specified by the context expression element. If the expression

element matches exactly the component type of the satisfaction, the type distance is

0; if it is an immediate superclass, the distance is 1, and so on.

2. Order the context matches by reversing them and sorting the reversed matches in

lexicographical order by priority.
7Grapht does not currently consider qualifier matcher priority. This omission will be corrected in an

upcoming release.
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These rules are designed to provide reasonable behavior when coupled with the policy

API (section 4.4.8) by favoring context expressions that match deeper in the object graph.

This allows the programmer to specify policy by matching some type deep in the graph, and

know that their new binding will take precedence over bindings further out in the graph.

If two matching bindings in a single binding function are equivalent — they have the

qualifier matchers of equal specificity, and their context matches are equal — then Grapht

fails with an error indicating that the bindings are ambiguous. Applications should not

specify multiple applicable bindings without using multiple binding functions to indicate a

clear precedence relationship.

Subtypes

Section 4.3.4 describes the basic requirements for the behavior of bindings with respect to

subtypes. It informs our answers to the following questions:

• How do bindings match subtypes or supertypes?

• If multiple bindings match, how do we pick the correct one?

• It seems that context expressions should match subtypes — how do we order context

matches in the face of subtypes?

The last of these was addressed previously when discussing context specificity; we now

turn to the other two questions. One way to obtain the desired behavior would be to adjust

the binding match rules so that a binding of a type 𝜏 also matches dependencies on super-

types of 𝜏 and supertypes of the target type 𝜏′ (optionally restricted so that they must also

be subtypes of 𝜏). This has the downside, however, that determining whether a binding

matches would involve looking both at its match rule — the type, qualifier matcher, and
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context expression — and its target, complicating the bind rule matching logic and seman-

tics. It is cleaner, in our opinion, to have the question of whether a bind rule matches or not

be completely determined by its left-hand side.

Therefore, we offload the subtype binding requirements to the policy builder. Bind

rules only match desires if their bound type is identical to that of the desire. The policy

builder builds three binding functions, each containing bindings for a different piece of the

type hierarchy. For a binding of type T to an implementation C, the following bindings are

generated:

1. An explicit binding T ↦ C.

2. An intermediate binding U ↦ C for every type U that is both a subtype (exclusive) of

T and supertype (inclusive) of C.

3. A supertype binding S ↦ C for every type S that is a supertype of T.

These binding functions are listed in decreasing order of precedence: exact bindings

take priority over intermediate bindings, which take priority over supertype bindings. This

allows for extensive auto-binding based on a few explicit bindings, but also allows the ap-

plication to override bindings at any point in the hierarchy to redirect some interface to a

different implementation.

The full list of binding functions used by the default configuration of a dependency

solver is as follows:

1. Explicit bind rules

2. Intermediate bind rules

3. Supertype bind rules
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4. Provider bindings (optional — Grapht can allow components to depend on providers

of their dependencies instead of the dependencies themselves, and this is implemented

as a special binding function; see section 4.4.9)

5. Defaults (section 4.4.6)

4.4.6 Defaults

The DefaultDesireBindingFunction implements Grapht’s default (just-in-time injection) logic,

allowing interfaces to specify default implementations or providers of themselves. This

binding function is generally configured last in the DependencySolver’s binding function

list, so it is only consulted if there are no explicit bindings matching a desire.

Defaults can be specified in two ways: with annotations, or with property files. Grapht

provides the annotations @DefaultImplementation and @DefaultProvider. These annota-

tions can be applied to a class or interface to specify the default implementation of that type;

they are equivalent to binding the type to the specified implementation or provider class.

They can also be applied to a qualifier; when resolving a qualified dependency for which

there is no binding, Grapht will first consult the qualifier for defaults before examining the

annotations on the dependency’s type.

Grapht also looks on the Java classpath for Java property files. For a type package.Iface,

it looks for the file META-INF/grapht/defaults/package.Iface.properties; if such a file ex-

ists, then it is expected to have an implementation or provider setting that specifies the name

of an interface or provider class, respectively. This mechanism allows applications to spec-

ify default implementations for classes that they import from other, non-injection-aware

packages.
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4.4.7 Instantiating Objects

Once a component and all of its dependencies have been resolved and the final graph sim-

plified, the component can be instantiated. The role of instantiator in fig. 4.8 is filled by

two objects in Grapht. The InstantiatorFactory converts an object graph into a component

instantiator (currently defined by reusing the Provider interface). It uses the root node’s

Satisfaction to obtain the component instantiator, resolving its dependencies using the out-

going edges. This is a recursive process, using each subsequent node’s outgoing edges to

provide instantiators for its satisfaction’s dependencies.

The component instantiator, when invoked, will invoke its dependencies’ instantiators

(if any) and instantiate the object (if necessary). Component instantiation is a two-step

process:

1. If the satisfaction to be instantiated is a class (either an implementation or provider

class), instantiate the class, using the dependency instantiators to obtain the required

components to pass to the class’s constructor, injectable setters, and injectable fields.

2. If the satisfaction is a provider (either a provider object or a now-instantiated provider

class), invoke the provider’s get() method.

4.4.8 The Grapht API

Applications embedding Grapht need to be able to do two major things with it:

• Specify policy (bind component types to their respective interfaces).

• Request component instances
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InjectorBuilder bld = new InjectorBuilder();

bld.bind(I1.class)

.to(B.class);

bld.within(Left.class, B.class)

.bind(I2.class)

.to(C.class);

bld.within(Right.class, B.class)

.bind(I2.class)

.to(D.class);

Injector inj = bld.build();

I1 obj = inj.getInstance(I1.class);

assert obj instanceof B;

Listing 4.2: Example code to build and use an injector.

Injector is responsible for responding to component requests by resolving their depen-

dencies and instantiating the required components. Injectors are built by an InjectorBuilder,

which exposes APIs to bind types to implementations and thereby build up the policy.

Listing 4.2 demonstrates how to construct an injector and configure it with the bindings

in fig. 4.6. Bindings are expressed with a so-called ‘fluent’ API, using chains of method

calls to describe a binding in English-like syntax. The final to (or toProvider) call finishes

the binding and adds it to the list of bindings accumulated by the injector builder.

The binding API is built on contexts. By default, bindings go on the root context: they

are associated with the context expression ‘.∗’. The within method returns a nested context.

Bindings on this context are associated with an expression that matches any context con-

taining the qualified type passed to within. That is, for the qualified type (𝑞, 𝜏), it creates

a matcher ‘. ∗ (𝑞, 𝜏).∗’. within can be called on its own result, appending additional types

to match. The bindings finally added to such a context are applied to any injection context

of which the within qualifications are a subsequence (each subsequent to within appends a
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bind I1 to B

within (Left, B) {

bind I2 to C

}

within (Right, B) {

bind I2 to D

}

Listing 4.3: Groovy injector configuration.

another ‘(𝑞𝑖, 𝜏𝑖).∗’ to the accumulated context expression).

In addition to within, the binding API provides at, which produces an anchored match by

appending the qualified type without a subsequent repeated wildcard. This allows bindings

to be restricted so that they only activate for direct dependencies of some type.

LensKit augments the fluent API with a Groovy-based DSL, allowing a more structured

configuration style as shown in listing 4.3.

Under the hood, the injector builder is using a binding function builder to produce rule-

based binding functions (described in more detail in section 4.4.5), using the resulting bind-

ing functions to create a DependencyResolver, and creating a DefaultInjector that uses the

configured dependency resolver to resolve components to implementations.

In response to each getInstance call, the DefaultInjector asks the dependency resolver to

resolve the requested component into a constructor graph. It then re-runs the simplification

algorithm, re-using the merge pool from previous instantiations, to continually maintain a

single graph of all the components that have been instantiated. This allows instances to be

reused between getInstance calls as the instance caching policy dictates.

Applications requiring more direct control over Grapht can use the binding function

builder and dependency resolver components directly. LensKit does this in order to analyze
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and modify constructor graphs before instantiating them.

4.4.9 Providers and Cyclic Dependencies

JSR 330 requires that compliant DI containers support dependencies on providers, not just

dependencies on components. That is, if A requires a B, it can express a dependency on

a Provider<B> instead. If a provider does not cache instances, injecting it allows compo-

nents to create multiple new instances of DI-configured dependencies (although we find it

to generally be better to use a dedicated factory component for this purposes, to make the

intent clearer and to decrease the sensitivity of component behavior to the specific DI con-

figuration). Another major reason for injecting providers is to allow circular dependencies

to be instantiated by breaking the cycle of constructor dependencies; the JSR 330 TCK de-

pends on this. In this use case, the DI container supplies a provider as a promise that it will

eventually make the object available.

Since Grapht uses providers internally to implement all instantiation, even of classes

and pre-instantiated instances, injecting a provider is easy. Supporting cyclic dependencies

is somewhat more difficult. When Grapht encounters a dependency on a provider while

building the initial solution tree, it doesn’t resolve the provider’s dependencies immediately.

It instead adds the provider to a queue of deferred components to be processed after all non-

deferred dependencies have been resolved. Grapht then simplifies the graph of non-deferred

components and begins processing the deferred components one by one, simplifying after

each, until all dependencies are resolved. Using the simplification phase means that the

provider component will depend on the same graph nodes as — and therefore be able to

share objects with — other uses of the component, including uses that make the dependency

cyclic.

Cyclic dependencies mean that the final object graph will contain cycles that must be
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represented in the instantiation plan. Grapht’s graph abstraction is restricted to representing

rooted DAGs, so the dependency solver maintains a separate list of back edges completing

dependency cycles. The instantiator consults the back edge table if it cannot find some

required dependency in the graph itself. This keeps Grapht’s foundational structures focused

on the common case of acyclic dependencies, while allowing for cyclic dependencies if

needed. LensKit does not enable Grapht’s cyclic dependency support, and can therefore

ignore the back edge table (it will always be empty). This has the side effect of preventing

LensKit components from depending on providers, but this has not been a problem.

4.5 Grapht in LensKit

Grapht’s requirements and design have been driven by the needs of LensKit for configuring

and manipulating algorithms. This section describes in more detail how Grapht’s features

and design enable some of LensKit’s sophisticated capabilities.

4.5.1 LensKit’s Integration

As mentioned in section 4.4.8, LensKit embeds Grapht by directly using the Dependency-

Solver and working with the resulting constructor graphs. Its LenskitConfiguration object

re-exposes the Grapht binding API, using a BindingFunctionBuilder to build up binding

functions like Grapht’s InjectorBuilder does. It also has a method to configure root compo-

nents; the recommender building process starts at the root components to determine the set

of components available, and LensKit does not support the on-the-fly injection supported

by Grapht’s DefaultInjector. The core LensKit interfaces (section 3.4 are registered as roots

by default; if an application wants components other than those transitively available via the

dependencies of the selected implementations of the core dependencies to be available in
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the final recommender container, it needs to register them as roots.

The LenskitRecommenderEngineBuilder class takes one or more configurations and

uses them to build up a recommender engine. It builds a DependencySolver using the

binding functions produced by each of the configurations (each configuration contributing

3 binding functions, as described in section 4.4.5), ending the list with the default binding

function. It then uses the dependency resolver to compute the constructor graph, which is

used by the LenskitRecommender class to instantiate recommender components.

4.5.2 Easy Configuration

Grapht’s strong support for defaults, modeled heavily after Guice’s capabilities, makes it

easy to configure relatively complex networks. We have also wrapped its fluent API in

an embedded domain-specific language in Groovy, allowing for very straightforward and

readable configuration. A working item-item recommender requires very little explicit con-

figuration:

bind ItemScorer to ItemItemScorer

within (UserVectorNormalizer) {

bind VectorNormalizer to MeanCenteringVectorNormalizer

}

4.5.3 Identifying Shareable Components

Computing the object graph as a first-class entity prior to object instantiation allows LensKit

to automatically identify objects that can be shared between different uses of the recom-

mender. This is useful in at least two places: identifying common components that can

be reused between multiple configurations in an experiment, and pre-building expensive

components to be used by multiple threads (or processes) in a running application.
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Pre-Building for Web Applications

The core issues that affect the ability for components to be shared across web requests are

thread safety and database access. In many common architectures, web applications open

database connections or obtain them from a pool on a per-request basis. Any component

that needs access to the database therefore needs to be instantiated for each request, so it

can access the database connection in use for that request.

Many components, such as the item-item similarity matrix, are both immutable and

independent of the database once they have been computed. These components can be

instantiated once and shard across requests. Some of these components may require access

to the database in at construction time (e.g. to learn a model) but, once constructed, are

independent of the database. The goal of LensKit’s automated lifecycle separation is to

identify and pre-instantiate these components.

The path from LenskitRecommenderEngineBuilder, resolving a LensKit algorithm con-

figuration into an object graph, to the LenskitRecommender that makes its components

available is somewhat more complicated than the overview provided in section 4.5.1. In

more detail, the LensKit recommender builder does the following:

1. Build a graph from the algorithm configurations.

2. Traverse the graph, looking for shareable components. Each shareable component is

instantiated immediately, and its node is replaced as if it were the result of an instance

binding.

3. Encapsulate the resulting graph, with shareable components pre-instantiated, in a

LenskitRecommenderEngine.

114



4.5. Grapht in LensKit

4. LenskitRecommenderEngine allows new LenskitRecommender objects to be cre-

ated; each such recommender will have a copy of the instantiated graph (sharing

the instances of shareable components) and create unique instances of non-shareable

components.

In order to support these manipulations, LensKit introduces two annotations to indicate

the way components should be handled by the recommender engine builder. One, @Share-

able, is applied to components to identify them as candidates for sharing. This annotation

marks a component as thread-safe and usable across requests.8 It must be applied to the

implementation, not to the interface; the same interface may well have both shareable and

non-shareable implementations.

The second, @Transient, is applied to dependencies of a component to indicate that

the dependency is only needed during construction (or, if it is on a provider’s dependency,

that the provider only needs it to build objects). It promises that, once the constructor or

provider has built an object, the object is free of references to the dependency. This allows

shareable components to access non-shareable components (such as the data access object)

during their construction phases, so long as they do not retain references to them. This

is used, for instance, by the item-item model builder on its dependency on the item event

DAO: the builder must have access to the data in order to build a similarity matrix, but the

matrix will not reference or use the DAO.

In step (2) above, LensKit scans the constructor graph to identify all shareable com-

ponents that have no non-transient dependencies on non-shareable components. These

components are then pre-instantiated and prepared for sharing, and LensKit modifies the
8@Shareable is a promise made by the class developer, and they are still responsible to ensure that their

class is written to be shareable (among other things, it must be thread-safe). LensKit does not provide any
verification that shareable classes actually are shareable. But if the developer has promised that a particular
class is shareable, then LensKit will share it unless one of its dependencies precludes sharing.
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constructor graph to substitute pre-computed instances constructors in place of the original

constructors for the shared components The resulting constructor graph is equivalent to the

result of manually pre-instantiating each shared component and using these instances in a

configuration. This allows algorithm authors to leverage a lot of framework assistance for

deploying their algorithms in realistic environments with just a few Java annotations.

The modified graphs, with the pre-instantiated shared components, can also be serialized

to disk and reloaded later. We use this to compute recommender models in a separate

process from the web server; once a new model is computed and saved, the web server

notices and reloads its version of the model from disk.

The logic that LensKit uses for lifecycle separation could also be adapted to provide

robust, automatic support for object scoping in more traditional web applications.

Sharing in Evaluation

The evaluator’s use of sharing is somewhat simpler. It processes all the algorithms config-

ured for a evaluation and has Grapht create their component graphs before training or evalu-

ating any of them. It then uses the merge pool to merge all of the graphs, so any component

configurations shared by multiple components are represented by common subgraphs.

The evaluator caches shareable objects (identified with the same logic as is used for life-

cycle separation) across algorithms. It also establishes dependency relationships between

individual evaluation jobs (evaluating a single algorithm on a single data set) so that a single

use of a common component is built first, with other uses waiting for it to complete. This is

to allow a multithreaded evaluation to start working on other algorithms that do not share

common components instead of starting 8 evaluations that will all block on the same model

build.
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4.5.4 Visualization and Diagnostics

Pre-computing dependency solutions also provides benefits for debugging recommender

configurations. First, it ensures that dependency problems fail fast. Since some algorithms

have complicated models that, on large data sets, may take a long time to compute, it is use-

ful to fail quickly rather than have dependencies of some component fail only after spending

hours computing a model. The multi-stage approach employed by Grapht ensures that all

dependency errors are identified as early as possible, as they will result in a failure to build

a constructor graph instead of a failure to instantiate needed objects.

It also allows us to provide diagnostic tools such as automatic diagramming of config-

urations (e.g. fig. 3.3) without incurring the cost of object instantiation. Guice and Pic-

oContainer provide support for inspecting and diagramming configurations, but they both

accomplish this by instrumenting the instantiation process. Grapht allows the dependency

solution, representing the final object graph, to be computed independently of object instan-

tiation, allowing for cleaner tooling support.

4.5.5 Contextual Policy

The availability of context-sensitive policy in Grapht has influenced the design of LensKit’s

components and reduced the need for redundant qualifiers. One case where this applies is in

the similarity components used by the nearest-neighbor collaborative filters (sections 3.7.4

and 3.7.5). We define specific types for comparing users and items (UserSimilarity and

ItemSimilarity, respectively), but many similarity functions, such as cosine similarity, just

operate on the vectors. We therefore provide a generic VectorSimilarity class that imple-

ments vector similarities without item or user IDs, and provide default implementations of

the user- and item-specific similarity functions that delegate to a vector similarity. If both

user and item similarities appear in an algorithm configuration, we can use context-sensitive
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configuration to select a different vector similarity for each. For example, to use Spearman

for comparing users and cosine similarity for items, we can do the following:

within (UserSimilarity) {

bind VectorSimilarity to SpearmanCorrelation

}

within (ItemSimilarity) {

bind VectorSimilarity to CosineVectorSimilarity

}

Without context-sensitive policy, we would need to use a qualifier to distinguish between

item and user vector similarities if both are used in the full algorithm. Solely relying on a

qualifier, however, would prevent us from configuring different item similarities in the same

algorithm unless the algorithm components themselves are deeply aware of the composition

relationship. With context-sensitive policy, we can just specify enough information to find

the location where we want each similarity function. For example, we can configure a hybrid

of two differently-configured item-item recommenders:

within (Left, ItemScorer) {

within (ItemSimilarity) {

bind VectorSimilarity to PearsonCorrelation

}

}

within (Right, ItemScorer)

within (ItemSimilarity) {

bind VectorSimilarity to SpearmanCorrelation

}

}

Context-sensitive policy allows us to achieve these kinds of results and compose in-

dividual components into arbitrarily-complex configurations without implementing ver-

bose, error-prone custom wrapper components to expose the particular configuration points
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needed as qualifiers. And if we have context-sensitive policy, many qualifiers (such as qual-

ifying the VectorSimilarity dependencies to indicate whether they apply to users or items)

become redundant and add no clarity to the design or configuration.

Context-sensitive policy becomes necessary, not just convenient, when configuring hy-

brid recommenders that reuse the same component implementations in different configu-

rations. Problems of the sort shown in fig. 4.6(a) quickly arise in such algorithms, and

context-sensitive policy allows LensKit recommender components to be fully composable

into arbitrary graphs with minimum manual configuration.

4.6 The Grapht Model

In this section, we present a formal model of dependency injection that describes a slightly

simplified version of Grapht’s design and capabilities. The heart of this model is a com-

ponent request, a request to instantiate the appropriate implementation of some component

along with its dependencies. A binding function is used to identify the correct implemen-

tation of the request and, recursively, to satisfy its dependencies. All of this happens within

a runtime environment, defining the universe of discourse in which the injector operates.

For a well-formed policy, there will be a unique constructor graph produced by using it to

satisfy a type request.

This model is useful for defining the specifics of Grapht’s algorithms in concise terms,

and for reasoning about dependency injection. We use it to show that qualifiers are reducible

to contexts and thus strictly less expressive (in section 4.3.3 we demonstrated configurations

that cannot be expressed by qualifiers but can with context-sensitive policy).

Our model and its presentation are organized as follows:

1. Define dependency injection component requests, solutions, and policy, with context
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and context sensitivity but omitting qualifiers.

2. Show how to solve DI component requests and produce good solution graphs.

3. Extend the definitions with qualifiers and show a reduction from qualified DI to un-

qualified but context-sensitive DI.

The model and algorithms described in this section are fully independent of any partic-

ular language, runtime environment, or object model.

4.6.1 Core Definitions

Dependency injection occurs within the context of a particular runtime environment, pro-

vided by the language or platform’s runtime facilities, libraries in use, and the running

application’s type definitions.

Definition 1 (Runtime Environment). A runtime environment ℜ is a 3-tuple (𝑂, 𝑇, 𝐶),

where

• 𝑂 is the set of all possible objects.

• 𝑇 is a non-empty set of types.

• 𝐶 is a set of constructors. Each constructor 𝑐 ∈ 𝐶 constructs objects of some

type 𝜏 (denoted 𝑐 ( 𝜏) and has a set of dependencies expressed as types 𝜏′ ∈ 𝑇 .

The set of dependencies of 𝑐 is denoted 𝒟(𝑐).

We use set notation to reason about types: if an object 𝑥 ∈ 𝑂 is of type 𝜏 ∈ 𝑇 , we

denote this by 𝑥 ∈ 𝜏. Likewise, 𝜏 ⊆ 𝜏′ means that 𝜏 is a subtype of 𝜏′.9

9In a dynamic language, such as JavaScript or Python, 𝑇 can be considered a singleton set, with qualifiers
serving as the sole means of labeling dependencies.
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A constructor 𝑐 ∈ 𝐶 for type 𝜏 ∈ 𝑇 takes 0 or more input arguments (defined by 𝒟(𝑐))
and returns an object of type 𝜏. For the purposes of this model, constructors encapsulate any

mechanism for object instantiation; setter and field injection is included in the concept, as

are instances and providers (an instance binding results in a nullary constructor that returns

the instance, while a provider is a constructor that depends on the provider’s dependencies

and invokes the provider to create an instance). Some of a constructor’s dependencies may

be optional; for such a dependency, the injector substitutes a null value if no suitable con-

structor has been configured. For notational convenience and simplicity, we omit notation

for optional vs. mandatory dependencies, but they have negligible impact on the model.

The process of satisfying a component request will result in a constructor graph:

Definition 2 (Constructor Graph). A constructor graph in a runtime environment ℜ is

a directed graph 𝐺 with vertices V[𝐺] and

• a designated root vertex R[𝐺] ∈ V[𝐺]

• a constructor C[𝑣] ∈ 𝐶 associated with each vertex 𝑣 ∈ V[𝐺]

• a type T[𝑒] ∈ 𝑇 labeling each edge 𝑒 ∈ E[𝐺]

The following properties must also hold:

• All dependencies are satisfied:

∀𝑣 ∈ V[𝐺].∀𝜏 ∈ 𝒟(C[𝑣]).∃𝑣′ ∈ V[𝐺]. (C[𝑣′] ( 𝜏 ∧ (𝑣 𝜏Ð→ 𝑣′) ∈ E[𝐺])

• There are no extraneous edges:

∀𝑣 ∈ V[𝐺].|{(𝑢, 𝑣′) ∈ E[𝐺] ∶ 𝑢 = 𝑣}| = |𝒟(C[𝑣])|
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Further, it is useful to define a notion of equality between constructor graphs.

Definition 3 (Constructor Graph Equality). Two constructor (sub-)graphs of 𝐺1 and

𝐺2 rooted at 𝑣1 and 𝑣2 are equal if the following hold:

• C[𝑣1] = C[𝑣2]

• For each 𝜏 ∈ 𝒟(C[𝑣1]), let 𝑣′
1 ∈ V[𝐺1] such that (𝑣1

𝜏Ð→ 𝑣′
1) ∈ E[𝐺1] and

𝑣′
2 ∈ V[𝐺2] such that (𝑣2

𝜏Ð→ 𝑣′
2) ∈ E[𝐺2]. Then the subgraphs rooted at 𝑣′

1 and

𝑣′
2 must also be equal.

𝐺1 and 𝐺2 may be the same graph, to compare subgraphs with particular roots

within the same graph.

In order to support context-sensitive dependency policy, we also define a notion of con-

text.

Definition 4 (Context). A context 𝜒 = ⟨𝑐1, … , 𝑐𝑛⟩ is a finite sequence of constructors

representing a path from the root of a constructor graph.

The set of all contexts is denoted 𝑋; the empty context is ⟨⟩. The concatenation of two

contexts 𝜒1 and 𝜒2 is denoted 𝜒1 ++ 𝜒2.

Finally, we can define a component request:

Definition 5 (Component Request). A component request (𝜏, 𝜒) ∈ 𝑇 × 𝑋 is a request

for a component of type 𝜏 in context 𝜒.

Injection typically begins with a initial component request in the empty context: (𝜏0, ⟨⟩).
Component requests are resolved into constructor graphs by means of a binding func-

tion:
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1: function R-D(𝜏, 𝜒, ℬ)
2: 𝐺 ← new empty graph
3: 𝑐 ← ℬ(𝜏, 𝜒)
4: if 𝑐 is undefined then
5: fail there is no binding for 𝜏 in 𝜒
6: 𝑣 ← new vertex in 𝐺
7: C[𝑣] ← 𝑐
8: for 𝜏′ ∈ 𝒟(𝑐) do
9: 𝐺′ ← R-D(𝜏′, 𝜒 ++ ⟨𝑐⟩, ℬ)

10: V[𝐺] ← V[𝐺] ∪ V[𝐺′]
11: E[𝐺] ← E[𝐺] ∪ E[𝐺′] ∪ {𝑣 𝜏′

Ð→ R[𝐺′]}
12: return 𝐺

Listing 4.4: Resolving component request dependencies.

Definition 6 (Binding Function). A binding function ℬ ∶ 𝑇 × 𝑋 → 𝐶 is a partial

function such that for each (𝜏, 𝜒) where ℬ(𝜏, 𝜒) is defined, ℬ(𝜏, 𝜒) ( 𝜏.

To implement the dependency resolution task of a dependency injector, therefore, we can

use a binding function ℬ to resolve the (recursive) dependencies of an initial type request

(𝜏, ⟨⟩). This process yields a constructor graph 𝐺 that can be used to directly instantiate

the required components. The details of how this to compute a constructor graph from a

binding and a type request is the subject of the next section.

4.6.2 Resolving Component Requests

In order to satisfy a component request, we must use the binding function (policy) to com-

pute a constructor graph that, when instantiated, will produce an instance of the desired

component with all of its dependencies. We want implement the transformation of fig. 4.2(a)

into one of the object diagrams in fig. 4.2(b).

The R-D function in listing 4.4 naïvely produces a constructor graph to satisfy
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a component request (𝜏, 𝜒) with a policy ℬ. This algorithm works — and is the core of

Grapht’s dependency resolution in practice — but has two key deficiencies as written. First,

it loops endlessly if there cyclic dependencies.

Second, it produces a fresh vertex for every dependency relation encountered, rather

than reusing vertices representing the same components. The constructor graph it produces,

while meeting the requirements for an instantiable constructor graph, is a tree. Many appli-

cations, including LensKit, want to reuse components if they are required by multiple other

components rather than creating a new instance of a component each time it is required. This

can be achieved in two ways: either the instantiator can memoize its instantiation process,

so that applying the same constructor to the same dependencies reuses the existing instance,

or the graph can be simplified by collapsing subgraphs representing the same component

configuration into a single subgraph that has multiple incoming edges on its root node. The

latter method has the advantage of encoding possible component reuse in the graph itself,

making it available to static analysis operating on the graph, while not precluding the in-

stantiator from creating multiple instances if policy so dictates. Vertices can even carry

additional attributes specifying such policy decisions.

Therefore, we want to produce constructor graphs with maximal reuse: each constructor

appears on exactly one vertex for each unique transitive dependency configuration to which

it applies. We also want to detect and fail in the face of cyclic dependencies.

If the binding function is context-free (∀𝜏, 𝜒.ℬ(𝜏, 𝜒) = ℬ(𝜏, ⟨⟩)), then it is easy solve

both of these problems: R-D can be adapted into a depth-first graph traversal that

seen set to detect cycles and a memoization table to reuse constructor graphs. R-

D-XF (listing 4.5) shows such an algorithm.

If ℬ is not context-free, the situation is more complicated. The arguments passed to a

constructor may vary based on the context in which that constructor is used. We say that
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1: function R-D-XF(𝜏, 𝜒, ℬ)
2: 𝐺 ← new graph
3: XF-D-T(𝜏, 𝜒, ℬ, 𝐺, {}, {})
4: return 𝐺
5: function XF-D-T(𝜏, 𝜒, ℬ, 𝐺, 𝑀, 𝑆)
6: ▷ 𝑀 ∶ 𝐶 → V[𝐺] is constructor map
7: ▷ 𝑆 ⊆ 𝐶 is set of seen constructors
8: 𝑐 ← ℬ(𝜏, 𝜒)
9: if 𝑐 is undefined then

10: fail there is no binding for 𝜏 in 𝜒
11: else if 𝑀[𝑐] is defined then
12: return 𝑣
13: else if 𝑐 ∈ 𝑆 then ▷ seen but not finished
14: fail cyclic dependency of constructor 𝑐
15: else
16: 𝑣 ← new vertex in 𝐺
17: C[𝑣] ← 𝑐
18: add 𝑐 to 𝑆
19: for 𝜏′ ∈ 𝒟(𝑐) do
20: 𝑣′ ← XF-D-T(𝜏′, 𝜒 ++ ⟨𝑐⟩, ℬ, 𝐺, 𝑀, 𝐹)
21: add 𝑣 𝜏′

Ð→ 𝑣′ to E[𝐺]
22: 𝑀[𝑐] ← 𝑣
23: return 𝐺

Listing 4.5: Context-free resolution.

such a constructor’s dependencies are divergent. A constructor may have divergent depen-

dencies even if it has the same bindings for all its direct dependencies due to divergence in

its transitive dependencies, as in fig. 4.6. This means that it is difficult, if not impossible, to

determine whether a constructor’s dependencies will be divergent. Further, it is technically

possible to have several repetitions of a constructor before breaking a cycle. The following

configuration is an example of such a situation:
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𝑐 ( 𝜏 (4.1)

𝒟(𝑐) = {𝜏} (4.2)

𝑐′ ( 𝜏 (4.3)

𝒟(𝑐′) = {} (4.4)

ℬ(𝜏, 𝜒) =
⎧{{
⎨{{⎩

𝑐′ if 𝜒 = ⟨𝑐, 𝑐, 𝑐⟩

𝑐 otherwise
(4.5)

This configuration resolves to the constructor graph 𝑐 𝜏Ð→ 𝑐 𝜏Ð→ 𝑐 𝜏Ð→ 𝑐′. However, when

resolving 𝜏 to 𝑐 the second and third time, the resolution algorithm has no way of knowing

whether the cycle will terminate or not. While this particular example is degenerate, if 𝑐

has additional dependencies, such stacked configurations are not difficult to envision.

Grapht uses an efficient two-phase approach for producing constructor graphs with max-

imal reuse while using context-sensitive policy. It first applies ℬ and resolves dependencies

to produce a constructor tree using R-D, augmented with a depth limit on the de-

pendency tree to catch cyclic dependencies and ensure termination. It is possible for the

policy to produce acyclic but very deep graphs, but in practice it is unusual to have ex-

tremely deep object graphs. This approach results in an algorithm that has an arbitrary but

tunable limit instead of a structural limitation such as prohibiting a constructor from being

used to satisfy one of its own dependencies.

After producing a constructor tree, we simplify the tree by detecting and merging all

identical subgraphs. Listing 4.6 shows an efficient dynamic programming algorithm to

perform this simplification; this is the algorithm used by MergePool (section 4.4.3). The

resulting graph has a single vertex for each combination of a constructor and its transitive
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1: function S-G(𝐺)
2: ⟨𝑣1, … , 𝑣𝑛⟩ ← T-S(𝐺)a

3: 𝐺′ ← new empty graph
4: ⟨𝑣′

1, … , 𝑣′
𝑛⟩ ← new list

5: 𝑚 ← new map 𝐶 × 𝒫(V[𝐺′]) → [1, 𝑛]
6: ▷ map constructors and dependency vertices to list positions
7: for 𝑖 ← 1 to 𝑛 do
8: 𝐷𝑖 ← {𝑣′

𝑗 ∶ (𝑣𝑖, 𝑣𝑗) ∈ E[𝐺]} ▷ ∀𝑣′
𝑗 ∈ 𝐷𝑖, 𝑗 < 𝑖 and thus already merged

9: 𝑐𝑖 ← C[𝑣𝑖]
10: if 𝑚(𝑐𝑖, 𝐷𝑖) is defined then ▷ reuse previous vertex
11: 𝑗 ← 𝑚(𝑐𝑖, 𝐷𝑖)
12: 𝑣′

𝑖 ← 𝑣′
𝑗

13: else ▷ constructor × deps unseen, add new vertex
14: 𝑣′

𝑖 ← 𝑣𝑖
15: add 𝑣′

𝑖 to V[𝐺′]
16: for 𝑣′

𝑗 ∈ 𝐷𝑖 do
17: add (𝑣′

𝑖 , 𝑣′
𝑗) to E[𝐺′]

18: 𝑚(𝑐𝑖, 𝐷𝑖) ← 𝑖
19: R[𝐺′] ← 𝑣′

𝑛
20: return 𝐺′

aT-S topologically sorts a DAG so that edges go from right to left ((𝑣𝑖, 𝑣𝑗) ∈ E[𝐺] ⟹ 𝑗 < 𝑖)
and 𝑣𝑛 = R[𝐺].

Listing 4.6: Simplify Constructor Graph

dependencies in the solution, but may use the same constructor for multiple vertices, thus

achieving maximal reuse without sacrificing any generality. S-G starts at the

leaves of the tree and merging all possible vertices prior to merging the constructors that

may depend on them.

That S-G produces graphs with maximal reuse can be shown with strong

induction:

Base case (𝑣1)

C[𝑣1] will have no dependencies; otherwise, 𝑣1 would have outgoing edges and would

not be the first node in the topological sort. Also, the subgraph rooted at 𝑣1 has
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4.6. The Grapht Model

maximal reuse among the vertices seen so far: the algorithm has not encountered

any other vertices, so there are no other vertices with which it might be redundant.

Therefore, adding it to the currently-empty 𝐺′ means 𝐺′ has maximal reuse.

Inductive step (𝑣𝑖, 𝑖 > 1)

𝐺′ has maximal reuse. Each vertex 𝑣𝑗 for 𝑗 < 𝑖 has a corresponding vertex 𝑣′
𝑗 ∈ V[𝐺′]

that is the root of a non-redundant subgraph of 𝐺′. The algorithm takes maps the

dependencies of 𝑣𝑖 in 𝐺 to their corresponding vertices in 𝐺′ (line 8), and looks up

the constructor and this resolved dependency set in the table of nodes seen so far. If the

constructor has already been applied to equivalent dependencies, then it will appear

in the lookup table, and its resulting vertex (and subgraph) will be used, maintaining

maximal reuse. If (𝑐𝑖, 𝐷𝑖) does not appear in 𝑚, then either 𝑐𝑖 has never been seen, or

at least one vertex has a different configuration (otherwise, it would be in 𝑚). A new

vertex is generated for this unique configuration and maximal reuse is preserved.

Since the singleton graph trivially has maximal reuse, and no subsequent iteration breaks

the maximal reuse property, the final graph 𝐺′ will have maximal reuse.

4.6.3 Bindings

We have so far ignored how the binding function ℬ is represented. The high-level model

we employ is independent of any particular binding function representation, so an alterna-

tive mechanism could be substituted here while retaining the definitions and algorithms of

sections 4.6.1 and 4.6.2 This section describes the policy representation used by Grapht.

Grapht’s binding function is built a set of individual bindings specified by the applica-

tion’s configuration, each of which binds a contextually-qualified type to either a constructor

or another type.
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4.6. The Grapht Model

Definition 7 (Binding). A binding 𝑏 = (𝜏̄, 𝜒̃) ↦ 𝑡 specifies the implementation to use,

where

• 𝜏̄ ∈ 𝑇 is a type to match.

• 𝜒̃ is a context expression, a regular expression over contexts.

• 𝑡 is a binding target, either a type or a constructor. The type resulting from 𝑡 is

denoted 𝜏(𝑡); 𝜏(𝑡) = 𝑡 if 𝑡 is a type, and 𝜏(𝑡) = 𝜏′ if 𝑡 is a constructor 𝑐 ( 𝜏′.

Evaluating ℬ(𝜏, 𝜒) is a matter of finding the matching binding (𝜏̄, 𝜒̃) ↦ 𝑡 where

𝜏̄ = 𝜏 and 𝜒̃ matches 𝜒. If 𝑡 is a constructor, then ℬ(𝜏, 𝜒); if 𝑡 is a type, then the bindings

are evaluated recursively as ℬ(𝑡, 𝜒).

Any reasonable predicate over constructors can serve as the basis for atoms (defining

the set of constructors that will be matched at a particular position) in context expressions.

In runtime environments with subtyping, types are a reasonable choice of atom, with a type

𝜏 matching any constructor 𝑐 ( 𝜏′ where 𝜏′ ⊆ 𝜏; a root type can serve as the wildcard.

If there are multiple bindings that match (𝜏, 𝜒), then the most specific is selected. The

exact definition of specificity is dependent on the details of the runtime environment and

type system; section 4.4.5 describes the specificity notion used in Grapht.

4.6.4 Qualifiers

So far, our model has ignored qualifiers. In this section, we extend it with qualifiers and

show how to eliminate qualifiers to reducing to context-sensitive policy, outlining a proof

that context-sensitive policy is strictly more expressive than qualifiers.

As discussed in section 4.3.2, qualifiers are a convenient means of distinguishing be-

tween dependencies of the same type, particularly when a single component has multiple

129



4.6. The Grapht Model

..𝑐. 𝜏.
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.
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Figure 4.9: Reduction of qualified graph.

such dependencies They are also useful for categorizing dependencies in dynamically-typed

environments such as Python.

To add qualifiers to our model, we make the following amendments:

• Augment the runtime environment with a set of qualifiers 𝑄. Qualifiers can be con-

sidered to be opaque labels. We designate a particular qualifier 𝑞⊥ to represent the

lack of a qualifier.

• Constructor dependencies now have qualifiers: 𝒟 ∶ 𝐶 → 𝑄 × 𝑇

• Component requests now have qualifiers and are expressed as triples (𝑞, 𝜏, 𝜒).

• Binding functions now take qualifiers: ℬ(𝑞, 𝜏, 𝜒).

• Constructor graph edges are labeled with qualified types (E[𝐺] ⊆ 𝑄 × 𝑇 ).

• Contexts are now sequences of qualified constructors 𝜒 = ⟨(𝑞1, 𝑐1), … , (𝑞𝑛, 𝑐𝑛)⟩,

where 𝑞𝑖 is the qualifier on the edge leading to the vertex labeled with 𝑐𝑖.

The resolution algorithms simply need to pass the qualifier associated with each depen-

dency to the binding function and associate the qualifiers with the correct edge labels.

Figure 4.9 is a graphical depiction of the reduction of a constructor 𝑐 with two qualified

dependencies on 𝜏.

There are three steps to reducing qualifiers to context matching:
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1. Replace each qualified dependency (𝑞, 𝜏) with a dependency on a synthesized type

𝜏𝑞 ⊆ 𝜏. These synthetic types may be realized as actual types in the runtime envi-

ronment, or they may exist only as bookkeeping entities in the DI container.

2. Modify the initial component request (𝑞, 𝜏, 𝜒) to be (𝑞⊥, 𝜏𝑞, 𝜒) if 𝑞 ≠ 𝑞⊥.

3. Modify the bindings as follows:

• Bind each synthetic qualifier type 𝜏𝑞 to a constructor 𝑐𝑞(𝜏)(𝜏𝑞 with 𝒟(𝑐𝑞(𝜏)) =

⟨𝜏⟩.

• For each binding 𝑏 = ( ̄𝑞, 𝜏̄, 𝜒̃) → 𝑡, substitute the binding (𝜏̄, 𝜒̃ ++ ⟨ ̃𝑞⟩) → 𝑡,
where ̃𝑞 matches any synthetic constructor 𝑐𝑞(𝑡) whose corresponding qualifier

is matched by ̄𝑞.

We show how to modify bindings; any computable binding function should be able to

be similarly modified to look for contexts terminating in 𝑡𝑞.

This reduction works by replacing each qualified dependency (𝑞, 𝜏) resulting in a con-

structor 𝑐 with a constructor chain 𝑐𝑞(𝑡)
𝜏Ð→ 𝑐. Any policy that examines the qualifier at-

tached with a dependency type can instead look at the context to see if the type is being

configured to satisfy the dependency of a synthetic constructor.

After this reduction, the only qualifier in use is 𝑞⊥, and the only qualifier matcher is ⊤,

so qualifiers can be removed entirely. Not only are qualifiers unneeded, but they do not add

any expressive power over context-sensitive policy.

4.7 Conclusion

This chapter has described an approach to dependency injection based on a mathematical

model of dependencies and their solutions and a Java implementation using this framework.
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Grapht provides static analysis capabilities, context-sensitive policy, and extensive default-

ing capabilities, allowing it to better meet the needs of LensKit than the existing solutions.

Our approach to context-sensitive policy allows expressive matching on deep context

with easy configuration. For configuring recommender applications, this allows LensKit’s

individual components to be reconfigured into arbitrarily complex hybrid configurations,

allowing extensive code reuse. One of LensKit’s design goals is to provide an extensive

collection of building blocks that can be combined into sophisticated algorithms, and the

ability to configure them without requiring extensive and verbose object instantiation code

is crucial to that aim. We have also shown that context-sensitive policy is strictly more

powerful than the dependency qualifiers provided by many current dependency injection

frameworks; while we expect that qualifiers will live on due to their convenience, they can

be viewed as a syntax sugar on top of a more expressive paradigm.

There are a variety of extensions to dependency injection that may be worth considering

in the future. One is weighted dependency injection: under this scheme, constructors or

bindings have associated weights expressing the cost of using them, and the injector tries to

find the lowest-cost solution to the component request. This problem is likely NP-hard.

Opportunistic dependency injection is a simplified extension that is likely more practi-

cal. In opportunistic DI, some optional dependencies are marked as “opportunistic”, mean-

ing that they will only be instantiated and used if required by some other component as a

non-opportunistic dependency. They differ from normal optional dependencies in that an

optional dependency will be supplied if it is possible to satisfy the dependency given the

binding function, while an opportunistic dependency is only supplied if the configured con-

structor is invoked to satisfy some other dependency in the DIP. The key use case for this

extension is when a component A can operate more efficiently if an expensive component B

is available, but the efficiency gain alone is not sufficient to warrant the cost of instantiating
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B. If some other component requires B, however, then A can take advantage of it under op-

portunistic DI. In LensKit this comes up with some of the data structures used for iterative

training of models such as the FunkSVD model. The structures used to make the FunkSVD

model training process efficient can be used by many other components to decrease time

and memory requirements, but it is not worth the cost of computing them just to compute

the mean of the ratings in the system.

Grapht has proven to be a valuable tool in making LensKit flexible and easy to use. We

hope that its well-defined model and straightforward implementation will make it a useful

platform for future developments in dependency injection.

133



Chapter 5

Configuring and Tuning Recommender Algorithms

T   several offline experiments we have run using LensKit. These

experiments serve two primary purposes: to improve our understanding of the behavior of

different algorithms and algorithm configurations, and to validate LensKit through repro-

ducing and extending previous results. The diversity of experiments we present here, and

their accompanying source code, also demonstrate the flexibility and usefulness of LensKit

for a variety of recommender research tasks, as well as being independent research contri-

butions in their own right.1

We first present comparative evaluation of several design decisions for collaborative fil-

tering algorithms in the spirit of previous comparisons within a single algorithm [HKR02;

Sar+01]. We examine LensKit’s user-user, item-item, regularized gradient descent SVD

algorithms. These experiments extend previous comparative evaluations to larger data sets

and multiple algorithm families and serves to demonstrate the versatility of LensKit and its

capability of expressing a breadth of algorithms and configurations. In considering some

configurations omitted in prior work we have also found new best-performers for algorith-

mic choices, particularly for the user-user similarity function and the normalization for co-

sine similarity in item-item CF. This set of experiments serves to show LensKit’s versatility

in recommender experimentation, and fill in gaps in our current understanding of how to
1 This work was done in collaboration with Michael Ludwig, Jack Kolb, Lingfei He, John T. Riedl, and

Joseph A. Konstan. Portions have been published in [Eks+11]; other portions are currently in preparation.
Jack Kolb and Lingfei He were particularly involved in the work on tuning baselines and item-item CF.
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tune and configure commonly-used collaborative filtering algorithms. These experiments

also provide insight into possible strategies for systematically tuning recommender system

parameters (or the difficulties of doing so, in the case of FunkSVD.

We conclude this chapter with some results on the impact of rank-based evaluation on

recommender configuration and design.

5.1 Data and Experimental Setup

These experiments use several common data sets:

ML-100K The MovieLens 100K data set, consisting of 100K user ratings of movies from

the MovieLens movie recommendation service.

ML-1M The MovieLens 1M data set.

ML-10M The MovieLens 10M data set. This data set also has 100K ‘tag applications’,

events where users apply a tag to a movie.

Y!M The Yahoo! Music data set, containing user ratings of songs on the Yahoo! Mu-

sic service and made available through the Yahoo! WebScope program. Unlike the

MovieLens data sets, which have a single file of rating data, this data set is pre-split

into 9 train/test segments. We do not re-combine the data, but use each train-test split

as-is from Yahoo!.

Y!M Subset A subset of one of the training sets in the Yahoo! Music data set. The subset

was produced by sampling 10% of the items and retaining all their ratings. We use

a subset so that we can experiment with the sparser domain while maintaining rea-

sonable experimental throughput. LensKit is capable of running on the full data set,
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but it takes substantial time to build and evaluate such models, making it difficult to

conduct extensive experiments.

Table 5.1 summarizes the size and sparsity of these data sets.

Data Set Range Ratings Users Items |𝑅|/|𝑈| |𝑅|/|𝐼 | Density

ML-100K [1, 5]/1 100,000 943 1682 106.04 59.45 6.305%
ML-1M [1, 5]/1 1,000,209 6040 3706 165.60 269.89 4.468%
ML-10M [0.5, 5]/0.5 10,000,054 69,878 10,677 143.11 936.60 1.340%
Y!M [1, 5]/1 717,872,016 1,823,179 136,736 393.75 5250.06 0.288%
Y!Music [1, 5]/1 7,713,682 197,930 13,673 38.97 564.15 0.285%

Table 5.1: Rating data sets

Most of our results are using the ML-100K and ML-1M data sets. ML-100K allows

us to directly replicate and compare with prior work, while ML-1M provides significantly

more data while being small enough for good experimental throughput. We also ran some

configurations on ML-10M and Yahoo! Music. Unless otherwise specified, all charts are

over the ML-1M data set.

For each data set, we performed 5-fold cross-validation with LensKit’s default method

described in section 3.8.2. 10 randomly-selected ratings were withheld from each user’s

profile for the test set, and the data sets only contain users who have rated at least 20 items.

The Y!M data set is distributed by Yahoo! in 10 train-test sets, with each test set con-

taining 10 ratings from each test user; we used the provided train/test splits and do not

re-crossfold for this experiment.

For each train-test set, we built a recommender algorithm and evaluated its predict per-

formance using MAE, RMSE, and nDCG.
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5.2 Baseline Scorers

The baseline scorers described in section 3.7.3 are a critical part of many LensKit recom-

mender configurations. The provide fallback scores when a collaborative filter does not

have sufficient data to score an item, and are the basis for many standard normalization

techniques. They can also be surprisingly effective rating predictors in their own right.

This section documents the relative performance of LensKit’s different standard baseline

scorers, and the behavior of the Bayesian damping term that they support.

We consider four baseline predictors:

• Global mean rating (𝜇)

• User mean rating (𝜇 + 𝜇̂𝑢, where 𝜇̂𝑢 is the user’s mean offset from the global rating;

𝜇̂𝑢 = 0 for users with no ratings)

• Item mean rating (𝜇 + 𝜇̂𝑖, where 𝜇̂𝑖 is computed for items as 𝜇̂𝑢 is for users)

• Item-user personalized mean (𝜇 + 𝜇̂𝑖 + 𝜇̃𝑢, where 𝜇̃𝑢 is the user’s mean offset from

item mean for each of their ratings)

Figure 5.1 shows the RMSE of each of these algorithms on several of our data sets.

Since the user mean rating does not rank items (all items will have the same rank for a

given user), nDCG is not interesting for this comparison. The relative performance of item

and user mean is inverted between the ML-1M and Y!Music data sets; this may be a function

of the differing sparsities in the user and item dimensions.

LensKit’s baseline scorers also support a mean damping term to bias means towards a

neutral value until there are sufficient ratings to have a good sample of the user or item’s

bias. A damping term of 𝑁 is equivalent to assuming that the user or item has 𝑁 ratings at
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Figure 5.1: Baseline scorer accuracy
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the global average value (for the user-item mean, the damping on a user assumes 𝑁 ratings

at the item average, not global average). Figure 5.2 shows the effect of damping on the

baseline predictor’s accuracy. A small amount of damping provides negligible benefit in

predicting for MovieLens with user means and no benefit on Y!Music. When using a rank

accuracy metric (not shown), damping provides no benefit; this is likely due to its lack of

impact on item means, since adjusting the user mean does not affect the ranking of items

for a user. It does not seem worth the cost to tune damping; either omitting mean damping

or setting it to a small value (e.g. 5) and leaving it appear to be reasonable and defensible

decisions.

5.3 User-User CF

Herlocker, Konstan, and Riedl [HKR02] tested a variety of configuration choices for user-

user collaborative filtering to assess their relative performance. LensKit’s flexibility allows

us to revisit this work and extend it with additional configurations not considered as well as

new metrics (the original work considered only MAE).

Two of the key configuration decisions in user-user CF are the choice of similarity func-

tion for comparing users and the number of neighbors to use in each prediction. Herlocker,

Konstan, and Riedl [HKR02] tested Pearson and Spearman correlations with and without

significance weighting (a damping term to reduce the similarity of users with few rated items

in common). We consider both of these configurations, as well as cosine vector similarity

over both the raw ratings and the mean-centered ratings.

Figures 5.3 and 5.4 show the performance of user-user CF on the ML-100K and ML-1M

data set for these similarity functions over several neighborhood sizes with different choices

of normalization strategy prior to averaging for the final prediction. User scores items with

139



5.3. User-User CF

User UserItem Variance

●
●

● ●

●
●

●

● ●
●

● ●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●●
●

●

●● ●
●

●

●

0.76

0.78

0.80

0.72

0.74

0.76

0.78

M
L−

100K
M

L−
1M

25 50 75 100 25 50 75 100 25 50 75 100
Neighborhood Size

M
A

E

Similarity ● Cosine Pearson Spearman MeanCtrCosine Weighted Pearson Weighted Spearman

Figure 5.3: Prediction accuracy (MAE) for user-user CF, across two data sets with different choices
of similarity function and score normalization.

a weighted average over deviations from each user’s mean rating, UserItem averages over

deviations from the user-item mean, and Variance 𝑧-normalizes user ratings prior to scoring.

This is integrated into the scoring function as follows:

𝑝𝑢𝑖 = 𝑓 −1 (∑𝑣∈𝒩 sim(𝑢, 𝑣)𝑓 (𝑟𝑣𝑖)
∑𝑣∈𝒩 |sim(𝑢, 𝑣)| )

𝑓User(𝑟𝑢𝑖) = 𝑟𝑢𝑖 − 𝜇𝑢

𝑓UserItem(𝑟𝑢𝑖) = 𝑟𝑢𝑖 − 𝜇 − 𝑏𝑖 − 𝑏𝑢

𝑓Variance(𝑟𝑢𝑖) = 𝑟𝑢𝑖 − 𝜇𝑢
𝜎𝑢

For items for which user-user could not generate recommendations, we used the user-

item mean; all nonpositive similarities were excluded. The Weighted versions of the Pearson
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Figure 5.4: Prediction accuracy (RMSE) for user-user CF, across two data sets with different choices
of similarity function and score normalization.

and Spearman correlations use significance weighting with a threshold of 50 to reduce the

similarity of users with few rated items in common. Significance weighting multiples the

similarity by min(|𝐼𝑢 ∩ 𝐼𝑣|, 50)/50, decreasing the influence of neighbors until they have 50

items in common.

Our ML-100K results differ slightly from those reported by Herlocker et al. — they

found weighted Spearman and Pearson to perform equivalently, while we Pearson to con-

sistently outperform Spearman — but our results are consistent with their recommendation

to use Pearson instead of Spearman, and are otherwise similar. We have tried several differ-

ent configurations to attempt to recreate the exact results; our inability to do so demonstrates

the need for an improved culture of reproducibility in recommender systems research.

Of particular note is the performance of cosine similarity, which they did not consider.
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MeanCtrCosine first normalizes each user’s ratings by subtracting their mean rating, then

computes the cosine vector similarity between them. Early work that found cosine to per-

form poorly for user-user CF [BHK98] did not explicitly consider mean-centering data prior

to computing the similarity.

There is also another way of looking at this relationship. If the two users have rated the

same set of movies, cosine similarity is mathematically equivalent to the Pearson correla-

tion:

cos(𝐮̂, ̂𝐯) = 𝐮̂ ⋅ ̂𝐯
‖𝐮̂‖‖ ̂𝐯‖

= ∑𝑖 ̂𝑢𝑖 ̂𝑣𝑖

√∑𝑖 ̂𝑢2
𝑖 √∑𝑖 ̂𝑣2

𝑖

= ∑𝑖(𝑢𝑖 − 𝜇𝑢)(𝑣𝑖 − 𝜇𝑣)
√∑𝑖(𝑢𝑖 − 𝜇𝑢)2√∑𝑖(𝑣𝑖 − 𝜇𝑣)2

= cor(𝑢, 𝑣)

However, the two users will not have rated the same movies (if they did, then the neigh-

bor would not be useful, because it cannot contribute information about any new items).

Historically, the Pearson correlation has been computed by restricting all sums to be over

the items the users have both rated (𝐼𝑢 ∩𝐼𝑣). This is consistent with the general statistical ap-

plication of correlation. Cosine similarity has sometimes been implemented this way, but in

LensKit and historical research [BHK98] the sum is effectively over the union of both item

sets (𝐼𝑢 ∪ 𝐼𝑣), treating missing values in the normalized vectors as 0. This means that, for

users who have not rated many of the same items, the numerator decreases (since there are

fewer nonzero rating products to sum) but the denominator may still be large (since it con-

siders all items rated by each user). As a result, the similarity between users who have each

rated many items but not many in common is naturally discounted, roughly proportional to
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Figure 5.5: Prediction accuracy for item-item CF on ML-1M.

|𝐼𝑢 ∩ 𝐼𝑣|/(√|𝐼𝑢|√|𝐼𝑣|) (the relationship is not linear due to its dependence on the actual values

of the ratings, not just their presence). We can view this natural discounting as a parameter-

free version of significance weighting, and our results here show that it seems to be just as

effective, if not superior.

Another configuration not considered in previous published user-user literature is aver-

aging over deviations from the full user-item personalized mean. Most work has focused on

mean-centering or 𝑧-normalizing user vectors prior to computing predictions. We observe

here that subtracting the user-item mean — so the user-user collaborative filter is only at-

tempting to model the deviation of each rating from the user and item biases — outperforms

both approaches that only consider the user’s ratings.
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5.4. Item-Item CF

5.4 Item-Item CF

Figure 5.5 summarizes the performance we achieved with item-item CF (section 3.7.4),

revisiting two of the configuration dimensions explored by Sarwar et al. [Sar+01]. The

neighborhood size is the number of neighbors actually considered for each prediction; in

all cases, the computed similarity matrix was truncated to 250 neighbors per item. No

significance weighting or damping was applied to the similarity functions. Each of the

different cosine variants reflects a different mean-subtracting normalization applied prior

to building the similarity matrix; user-mean cosine corresponds to the adjusted cosine used

by Sarwar et al. Consistent with that work, normalized cosine performs the best, and this

result still holds on the larger data set. We also find that normalizing by item mean performs

better than user mean; this suggests that measuring similarity by users whose opinion of an

item is above or below average provides more value than measuring it by whether the prefer

the item more or less than the average item they have rated. This result is quite surprising,

which is quite possibly why it has not been tried in prior work. However, with LensKit’s

flexibility, we decided to try all the baseline normalizers, and found it.

Similarity function and neighborhood size are just a few of the configuration points

LensKit’s item-item implementation exposes, however. Other parameters that affect item-

item’s performance and behavior include:

• The number of similar items to retain in the model

• Item similarity damping

• Normalization strategy

The similarity damping term 𝛽 is a parameter to bias the similarity of items with few

users in common towards 0, reflecting the lack of information about their true similarity. For
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Figure 5.6: Item-item accuracy by neighborhood size.

cosine similarity, it is incorporated in the denominator (𝑠𝑖𝑚(𝑖, 𝑗) = ⃗𝑟𝑖⋅ ⃗𝑟𝑗
‖ ⃗𝑟1‖2‖ ⃗𝑟2‖2+𝛽 ). It achieves

the same goal as significance weighting [HKR02] in an arguably more elegant manner.

Parameter Relationships

To develop a systematic method of efficiently tuning item-item CF, we want to identify the

relationships between parameters. In particular, we want to identify interaction effects be-

tween parameters with respect to to error metrics in order to see whether some parameters

can be trained independently. If the optimal choice for one parameter does not affect the

optimal choice for another, then those parameters can be disentangled and trained indepen-

dently instead of relying on grid search. This decreases the parameter search space for those

parameters from 𝑂(𝑚𝑛) to 𝑂(𝑚 + 𝑛).

Figure 5.6 shows the accuracy of item-item CF for different model sizes as the neigh-

borhood size is varied. For this evaluation, we normalized ratings by subtracting the item

mean, used no similarity or baseline damping, and used item mean for fallback predictions.

We observe two key things from this chart:
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5.4. Item-Item CF

• Relatively few neighbors are needed (10–20 is a reasonable value across the board).

• There is no significant interaction between model size the optimal value of the neigh-

borhood size. The curve adjusts slightly for different model sizes, but does not affect

the optimal neighborhood size.

Since they do not interact within a reasonable range of neighborhood sizes, neighbor-

hood size and model size can be picked independently to achieve an optimal combination.

This is expected theoretically: since models and neighborhoods are chosen by the same cri-

terion (similarity), the only difference that the model size makes is restricting the available

neighbors. For any prediction where there are enough neighbors in the model for a full

neighborhood, having additional neighbors in the model provides no additional benefit.

Figure 5.7 shows accuracy as the similarity damping value is adjusted. The optimal

damping value is small and depends strongly on model size. Damping hurts full models but

improves accuracy on truncated models. We found no interaction between damping and

neighborhood size for reasonable neighborhood sizes; ML1M had a small interaction at

𝑛 = 10, but fitting the neighborhood size before the damping term removes this interaction.

These results are consistent with our user-user results in section 5.3 that significance

weighting, while necessary for Pearson correlation, does not help cosine similarity. They

also suggest that the benefit of damping or significance weighting is in neighborhood selec-

tion, not final score computation: by preferring to keep high-confidence neighbors (since

low-confidence similarities are damped out), the model is able to achieve higher accuracy;

if enough neighbors are available, however, damping does not improve the ability to select

neighbors for doing the actual scoring. Model truncation may be able gain benefit by incor-

porating confidence into the neighbor selection strategy and forgoing explicit damping of

similarities.
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Figure 5.7: Item-item accuracy by similarity damping.

Figure 5.8 shows the impact of the data normalization on recommender accuracy (all

recommenders using full models, and use item mean to supply predictions for unscore-

able items even when another baseline is used for normalization). Each baseline scorer is

used as a normalizer, normalizing rating data by subtracting that baseline’s scores prior to

computing similarities and rating predictions. We observe two key things here. First, con-

sistent with fig. 5.5, normalizing ratings by the item mean outperforms the user mean that

has historically been used. Second, the item-item recommender’s performance is not rank-

consistent with independent baseline performance. That is, the best-performing baseline,

when used as a normalizer, does not necessarily produce the best-performing collaborative

filter.

Training Strategy

We propose the following strategy for tuning the configuration of an item-item collaborative

filter:
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Figure 5.8: Normalizer impact on item-item performance.

1. Use item-user mean as the fallback for unpredictable items.2

2. Start with item mean normalization (or item-user; in LensKit, item mean is less com-

putationally expensive, so it is least expensive to start with it)

3. With a full model, start with a small neighborhood size (e.g. 10) and increase until a

local minimum is found.

4. Decrease model size for desired size/quality tradeoff.

5. Try the other of item mean and item-user mean normalization to see if there is im-

provement.

6. If desired, add a small amount of similarity damping to recover lost quality due to

model truncation.
2Our experiments did not do this due to an experimentation error, but item-item has high enough coverage

that any impact on our results should be negligible.
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5.5. Regularized SVD

Since model size does not affect the best neighborhood size, steps 2 and 3 can be re-

versed; in that case, a reasonable neighborhood size (e.g. 20) can be used to pick the desired

model size, and then the neighborhood size refined.

The performance difference between using the item mean and item-user mean baselines

for normalization seems to vary by data set, with sparsity being a possible reason. More

study is needed on a wider array of data sets to understand this relationship more exactly,

but using item mean seems to work well.

5.5 Regularized SVD

Figure 5.9 shows the performance of LensKit’s gradient regularized SVD (section 3.7.6)im-

plementation on both the 100K and 1M data sets for varying latent feature counts 𝑘. 𝜆 is the

learning rate; 𝜆 = 0.001 was documented by Simon Funk as providing good performance

on the Netflix data set [Fun06], but we found it necessary to increase it for the much smaller

ML-100K set.

Each feature was trained for 100 iterations, and the item-user mean baseline with a

smoothing factor of 25 was used as the baseline predictor and normalization. We also used

Funk’s range-clamping optimization, where the prediction is clamped to be in the interval

[1, 5] ([0.5, 5] for ML-10M) after each feature’s contribution is added.

The performance of matrix factorization recommenders is governed by many hyperpa-

rameters. These include:

• feature count 𝑘

• learning rate 𝜆

• regularization factor 𝛾
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Figure 5.9: Prediction accuracy for regularized SVD.

• per-feature stopping condition (threshold, iteration count, or other criteria)

• baseline predictor

More sophisticated variants have even more parameters. Most of these parameters will

affect the final factorized matrix, requiring the model to be retrained for each variant when

attempting to optimize them. Optimizing all these parameters by grid search is therefore

prohibitively expensive. In practice, a few of the parameters are tuned, such as feature
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5.5. Regularized SVD

count, using default values for many of the rest. The optimal values for some of these

hyperparameters is also heavily dependent on the data set: the learning control parameters

(learning rate and stopping condition) depend greatly, in our experience, on the number of

ratings in the data set.

Further, many of the parameters interact. Learning rate and stopping condition naturally

interact — a higher learning rate will accelerate convergence, though at the likely expense

of accuracy. Our experiments have also found the regularization term and feature count to

interact with the stopping condition in minimizing the recommender’s error.

To decrease the search space, we have attempted to find more automatic strategies for

determining when to stop training. The process of learning an SVD needs two stopping

conditions: it needs to know when to stop training each feature, and when to stop training

new features.

If we can determine when to stop either (or both) of these two processes in a parameter-

free fashion (or based on parameters whose values are unlikely to be dataset-dependent),

then we can decrease the dimensionality of the hyperparameter search space and make tun-

ing significantly more efficient. A similar approach may also be applicable to other param-

eters, but we focus here on the stopping condition.

5.5.1 Training a Feature

Any method for determining when to stop training a feature can depend only on information

available during the training process. The information available while training a feature

includes:

• The number of epochs computed so far

• The training error for each epoch

151



5.5. Regularized SVD

• If the training algorithm reserves a set of ratings for tuning/validation, the error on

these ratings after each epoch

• The average estimated gradient in an epoch (and its magnitude)

• Derivatives of any of these values

Directly thresholding training error is impractical, because the achievable error will dif-

fer between data sets, rating ranges, etc. Applying a threshold to the change in training

error between two epochs (thresholding the derivative of training error) is a feasible solu-

tion, however: if the change is small, especially over multiple iterations, then the feature

values have likely converged. Similarly, the change in validation RMSE can be thresh-

olded. Thresholding the magnitude (𝐿2 norm) of the average estimated gradient (change in

user and item feature weight vectors in an epoch) is also practical, with a low magnitude

indicating convergence. We have not yet tested any second derivatives of these features.

The learning rate is also key in the process of training a feature. So far, we have only

tested fixed learning rates. It may be that dynamic learning rate schedules would improve

the performance, either in training time or output quality, generally, and that it may make

thresholding approaches more useful.

5.5.2 Training New Features

Typically, the number of features is fixed in advance, and the initial value (rather than 0)

is assumed for the user/item values for features not yet trained; this has the unfortunate

side effect of making the training for each feature dependent on the number of features not

yet trained. Nonetheless, we have tested approaches that relax this, training each feature

independent of the number of remaining untrained features and attempting to automatically

detect whether to continue.
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5.5. Regularized SVD

The data available to decide whether to train another feature include:

• The number of features

• The training error of the last pass for each feature

• The error on a tuning/validation set of ratings after each feature

• The weight of the feature (product of the 𝐿2 norms of its user and item vectors; this

is the singular value in a true SVD)

• Derivatives of any of these values

These are subject to similar considerations as the training stopping criteria. Threshold-

ing the difference in feature weights is similar to using skree plots to pick the number of

latent factors in factor analysis.

5.5.3 Tuning Results

Unfortunately, none of these strategies can reliably match or beat well-selected parameter

values on ML-1M: 25–30 features for 125–50 epochs per feature. If they cannot reliably

find known good values on a well-understood data set, we are hesitant to trust them for

tuning on previously-unseen data.

We have yet to find a good way to disentangle stopping training on either an individual

feature or the entire model. FunkSVD accuracy seems to be fairly stable in the face of rea-

sonable values; differing slightly from our to-beat values does not produce large differences

in RMSE or nDCG. However, being unable to reliably match or beat the performance of

these values using more automated techniques hurts our ability to develop a tuning strategy.

A viable strategy will need to have more sophistication than the first-order approaches we

have listed here.
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5.6 Impact of Rank-Based Evaluations

Many approaches to recommendation interpret ratings as numbers on a linear scale.3 That

is, they assume that a 5-star movie is as much better than a 4-star movie as a 4-star is better

than a 3-star movie. This assumption is widely known to be incorrect: ratings provide a par-

tial ordering, but they are not a measurement. When a user rates one item 4 stars and another

5, the system can take that as evidence that they prefer the second to the first, but cannot

directly infer how much more the user likes the second. Ratings are effectively Likert-style

feedback [Bla03], but our algorithms are interpreting it as statements of absolute preference

values. The problems with this assumption have been gaining increasing attention in the

research community; notably, new recommendation techniques have been developed to get

away from this problem, such as predicting ratings with ordinal logistic regressions [KS11].

These assumptions are not just made by the algorithms themselves. Many common

prediction accuracy metrics, notably MAE and RMSE, also assume that subtracting ratings

is a meaningful thing to do. Amatriain [Ama11] proposed that this is causing problems

for recommender research: since our metrics make such a false assumption about the data

over which they are operating, we may well be incorrectly optimizing and measuring the

recommenders themselves.

We seek to understand whether this flaw in recommender design and evaluation cor-

responds to decreased effectiveness of recommender algorithms. Even if most algorithms

are based on a flawed premise — that user ratings provide an absolute measurement of

preference — it may be that these algorithms are still sufficiently effective.

Since LensKit allows us to easily test many different recommenders and configurations

with different evaluation metrics, we can hopefully provide some data to inform this discus-
3This work was done in collaboration with Michael Ludwig, John T. Riedl, and Joseph A. Konstan and

much of it was published in [Eks+11].
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sion. We therefore tested a selection of recommenders with both nDCG — a rank-accuracy

metric — and RMSE. If the relative performance of the algorithms differed, that would be

evidence that using distance-based accuracy metrics is indeed leading us astray.

Figure 5.10 shows some of the permutations of user-user and item-item collaborative fil-

tering tested in sections 5.3 and 5.4 using nDCG. In this setup, we compute nDCG only over

the test items, ranking them by prediction and using the user’s rating as the gain for each

item. This converts nDCG from its traditional top-𝑁 evaluation usage into a discounted

rank-accuracy metric. There is little difference in the relative performance of these the vari-

ants measured under nDCG and under MAE or RMSE (figs. 5.3 and 5.4). Of particular note

is the fact that Spearman correlation — a rank-based approach to computing user similarity

— continues to perform noticeably worse than distance-based methods. We might expect

it to perform better when using a rank-based evaluation metric.

This lack of change as a result of using nDCG does not mean that there is no impact

on recommender effectiveness as a result of distance-based evaluation. It may be that our

current families of algorithms cannot easily be adjusted to think of user preference in terms

of ranks and entirely new approaches are needed. It could also be the case that more sophis-

ticated experimental frameworks, particularly user studies or field trials, are necessary to

see an actual difference. The better-performing algorithms in our experiment achieve over

0.95 nDCG, putting them within 5% of being perfect within the measurement capabilities

of the metric. Achieving the remaining 5% may not be feasible with the noise inherent in

user ratings (as it is likely that ratings are not entirely rank-consistent with user preferences),

and may not accurately measure real user-perceptible benefit.

If we go further from rank evaluation, however, and start considering metrics in top-𝑁
configurations, optimal tuning values start to change more. Figure 5.11 shows the top-

𝑁 nDCG of various item-item CF configurations. Rather than ranking the test items, as

155



5.6. Impact of Rank-Based Evaluations

●

●
●

●

●
●

●

●

● ●

●

●

ML−100K ML−1M

0.945

0.950

0.955

25 50 75 100 25 50 75 100
Neighborhood Size

nD
C

G

Similarity ● Cosine Pearson Spearman MeanCtrCosine Weighted Pearson Weighted Spearman

User−User CF

ML-100K ML-1M

0.93

0.94

0.95

0.96

25 50 75 100 25 50 75 100
Neighborhood Size

nD
C

G

Similarity Cosine Cosine+Item Cosine+User Cosine+UserItem Pearson

Item-Item CF

Figure 5.10: Rank-based evaluation of CF configurations.
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Figure 5.11: Top-𝑁 evaluation of CF configurations.

was done to compute nDCG in fig. 5.10, each recommender in this setup generated a rec-

ommendation list from a set of candidate items containing the user’s test items plus 100

randomly-selected decoy items. Here, the best similarity function remains the same, but

the optimal choice of neighborhood size changes considerably.

Mean Reciprocal Rank (MRR) also produces some striking differences from RMSE.

Figure 5.12 shows the performance of item-item with different normalizers, like fig. 5.8 but

with MRR. MRR was computed like top-𝑁 nDCG: the recommender produced recommen-

dations from a candidate set containing the user’s rated items plus 100 random items, and

we considered an item ‘relevant’ if the user had rated it at least 3.5 out of 5 stars. The results

for the MovieLens data sets are consistent with RMSE (except for neighborhood size choice

for non-optimal normalizer), but the optimal choice of normalizer for Y!M is very differ-

ent. From this we conclude that tuning a recommender for performance on a top-𝑁 metric
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Figure 5.12: Item-item top-𝑁 performance by baseline normalizer

may result in a substantially different configuration — and very different recommender —

than tuning for a prediction accuracy metric. This raises the question of whether top-𝑁 and

prediction accuracy work on the same algorithm are really testing the same recommender.

However, the difficulties inherent in top-𝑁 evaluation of recommender systems keep us

from inferring too much from them. This could mean that achieving good recommendation

performance requires a different tuning than for prediction performance, or if MRR is a poor

metric for tuning a recommender. More work is needed to understand the mapping between

algorithms and user experience.

We still prefer to optimize for prediction accuracy or rank accuracy, as top-𝑁 perfor-

mance is subtle, dependent on the parameters of the evaluation (such as the set of candidate

items), and fraught with uncertainty in the face of missing data. However, it does show

that the choice of metric, particularly changing the evaluation setup away from prediction

accuracy, can have a significant impact on the optimal choice of algorithm configuration.

158



Chapter 6

When Different Algorithms Fail

I  , we present an offline experiment designed to elucidate one way in which

different recommender algorithms may differ: the users and items for which they make

errors.1 We are particularly interested in mispredictions, and want to know how often and

when one algorithm erroneously predicts a user’s rating for an item but another algorithm

correctly makes that prediction. We consider a prediction to be correct if it is within 1/2

star on a 5-star scale (the granularity of MovieLens’s rating input).

Prediction accuracy has traditionally been assessed by measuring the aggregate error,

using either MAE or RMSE or a related metric. This has two significant problems. First,

since ratings are ordinal, the idea of measuring error against them is problematic, as dis-

cussed in section 5.6. Second, they don’t seem to measure well the user experience of rating

prediction: a user is likely to notice if a rating prediction is off by a half-star or more, but is

unlikely to notice small differences in errors (e.g. being 0.25 vs. 0.28 off).

Examining mispredictions allows us to see how often an algorithm makes a prediction

that is close enough to be reasonable, or how often its predictions will be far enough off to

make a visible difference when displayed to the user. It also gives us a binary measure by

which we can say one algorithm was wrong but another was right.

In this experiment, we address three research questions:
1The bulk of this section has been published in [ER12]
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RQ1 How do classic collaborative filtering algorithms differ in their ability to correctly

predict ratings within a fixed tolerance? How does this relate to their performance on

traditional prediction error measures?

RQ2 Do different algorithms make different prediction errors?

RQ3 Are different algorithms better for different users?

We are also interested in whether different algorithms are better for different items, but

so far have not made much progress on that front.

These questions have implications for selecting algorithms and for combining algo-

rithms into hybrids [Bur02]. If two algorithms make roughly the same errors, then there

may not be much benefit to combining them, at least with simple hybridization techniques;

the additional marginal signal is likely not worth the computational overhead. Two algo-

rithms that make very different errors seem likely to be drawing on and contributing different

signals to the final recommender system. Also, in selecting a single algorithm, an applica-

tion may prefer to pick an algorithm that is close more often rather than an algorithm with

lower aggregate error, if there is a difference.

The success of hybrid approaches such as feature-weighted linear stacking (FWLS)

[Sil+09], that adapt a hybrid based on properties of the user and item being recommended,

suggest that the answers to RQs 2 and 3 are in the affirmative, but we seek to demonstrate

this more concretely and work towards a more transparent model for selecting and com-

bining recommenders. We are not aware of much published research that takes apart the

hybrids learned by FWLS and related techniques to attempt to understand what the con-

stituent algorithms’ strengths and weaknesses are, and the value contributed by each.
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6.1 Methodology

This experiment uses the ML-10M data set with 5-fold cross-validation, again using LensKit’s

default user-based strategy. For each user, we held out 20% of their ratings as test ratings

for the recommender.

We then used LensKit to train and run five recommender algorithms on the data, out-

putting the predictions for each test rating for analysis. We used the following algorithms,

choosing parameters based on prior results in the research literature and experience tuning

LensKit for the MovieLens data sets in the previous sections:2

• Item-user mean, the item’s average rating plus the user’s mean offset with a Bayesian

damping term of 25. This algorithm was also the baseline for all others — if they

could not make a prediction, the item-user mean was used.

• Item-item collaborative filtering with a neighborhood size of 30 and ratings normal-

ized by subtracting the item-user mean.

• User-user collaborative filtering with a neighborhood size of 30, using cosine similar-

ity over user-mean-normalized ratings. In the predict stage, ratings were normalized

by 𝑧-score [HKR02; Eks+11].

• FunkSVD with 30 features and 100 training iterations per feature.

• Apache Lucene [Apa11] as a tag-based recommender. Since the ML-10M data set

contains tags for movies, we created a document for each movie containing its title,

genres, and tags (repeating each tag as many times as it was applied). Recommenda-
2We have gained more experience in tuning and found better parameter values since this experiment was

originally conducted. For consistency with the published work, we have retained the original parameter values.
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Figure 6.1: Algorithm prediction error.

tion were then computed as in item-item collaborative filtering, with item neighbor-

hoods and scores computed by a Lucene MoreLikeThis query.

After running the recommenders, we processed each test set to discard all users with

fewer than 10 test ratings (ultimately using 44,614 of the 69,878 users in ML-10M) We

then split and each retained user’s test ratings into two sets: 5 ratings from each user went

into a tuning set, and the remaining ratings stayed in the final test set.

6.2 Basic Algorithm Performance

Figure 6.1 shows the overall RMSE achieved by each of the recommender algorithms (the

Single section), and fig. 6.2 shows the fraction of predictions each algorithm got correct.

The Blend algorithm is a linear combination of all 5 algorithms, trained on the tuning set.

The BestPred algorithm is an oracle switching hybrid: for each user-item pair, it uses
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Figure 6.3: Distribution of best algorithms, by prediction and user.
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the algorithm whose prediction is closest to the user’s true rating. This places a lower bound

on the accuracy achievable by any switching hybrid strategy on this data set. Figure 6.3(a)

shows how often this hybrid chose each algorithm.

The four per-user algorithms are switching hybrids that operate on a user-by-user basis.

UserBestRMSE and UserMostRight are oracle hybrids, picking the algorithm that achieves

the lowest RMSE or highest fraction of correct predictions, respectively, for each user;

figs. 6.3(b) and 6.3(c) show how often these hybrids picked each algorithm. The Tune vari-

ants are realistic switching hybrids that use tuning set performance to select the algorithm

to use on each user’s test ratings.

MAE RMSE FracCorrect

MAE 1.00
RMSE 0.97 1.00
FracCorrect -0.50 -0.41 1.00

Table 6.1: Error metric correlation matrix

Table 6.1 shows the correlation of the Fraction Correct method with the MAE and

RMSE, by user. Fraction Correct is correlated with prediction error, but not strongly: the

correlation with RMSE is less than 0.5. Figure 6.4 shows how often the two measures agree

on which algorithm is best; they only agree 32.1% of the time.

The RMSE and correct-prediction metrics for evaluating algorithms are mostly rank-

consistent, however: an algorithm with lower RMSE generally gets more predictions cor-

rect. This is even the case with the per-user tuning-based hybrids: picking the algorithm

that has the most correct predictions over the user’s tuning ratings results in a hybrid that

does slightly better on both RMSE and fraction correct than using the tuning RMSE for

selection.

There are two notable exceptions to this. First, the user oracle hybrid does not have very

164



6.2. Basic Algorithm Performance

FunkSVD ItemItem Lucene Mean UserUser

0.0

0.1

0.2

0.3

0.4

Fun
kS

VD

Ite
m

Ite
m

Lu
ce

ne
M

ea
n

Use
rU

se
r

Fun
kS

VD

Ite
m

Ite
m

Lu
ce

ne
M

ea
n

Use
rU

se
r

Fun
kS

VD

Ite
m

Ite
m

Lu
ce

ne
M

ea
n

Use
rU

se
r

Fun
kS

VD

Ite
m

Ite
m

Lu
ce

ne
M

ea
n

Use
rU

se
r

Fun
kS

VD

Ite
m

Ite
m

Lu
ce

ne
M

ea
n

Use
rU

se
r

F
ra

ct
io

n 
P

ic
ke

d

Figure 6.4: Comparative distributions of picked algorithms by user. Each panel contains the users
for which the RMSE oracle hybrid picked the given algorithm, and shows the distribution of algo-
rithms picked by the Most Right oracle hybrid.

low RMSE compared to the other user-based algorithms, while it produces the most correct

predictions. Second, the best single algorithms — FunkSVD and ItemItem — are essen-

tially tied on RMSE (FunkSVD has a nearly immeasurably small advantage, but our exper-

iments with these algorithms usually have a consistent, small advantage for FunkSVD), but

item-item gets more predictions correct. This suggests that when tuning a recommender for

predicting user ratings, optimizing for making predictions correctly may result in different

design decisions than optimizing RMSE or other metrics.

On both metrics, item-item and FunkSVD are clear winners among the single algo-

rithms, with user-user coming in behind them. Thus, our answer to RQ1 is that item-item

produces the most correct predictions, and that mispredictions and RMSE are broadly cor-

related but differ in some key places, including comparing the performance of the best-

performing algorithms.
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Primary # Correct Secondary
ItemItem FunkSVD UserUser Lucene Mean

ItemItem 859,600 120,078 131,356 126,154 117,320
(15.8%) (17.3%) (16.6%) (15.4%)

FunkSVD 850,139 129,539 144,986 153,198 129,842
(16.8%) (18.8%) (19.9%) (16.9%)

UserUser 830,563 160,393 164,562 157,802 118,440
(20.3%) (20.8%) (20.0%) (15.0%)

Lucene 797,193 188,561 206,144 191,172 110,492
(22.9%) (25.0%) (23.2%) (13.4%)

Mean 763,395 213,525 216,586 185,608 144,290
(24.9%) (25.3%) (21.7%) (16.8%)

Table 6.2: Correct predictions by primary and secondary algorithm.

Algorithm # Correct % Correct Cum. % Correct
ItemItem 859,600 53.0 53.0
UserUser 131,356 8.1 61.1
Lucene 69,375 4.3 65.4
FunkSVD 44,960 2.8 68.2
Mean 16,470 1.0 69.2
Unclaimed 498,850 30.8 100.0

Table 6.3: Cumulative correct predictions by algorithm.

6.3 Relative Errors

To answer RQ2, we want to know when one algorithm misses a prediction but another

gets it correct. Table 6.2 shows, for each algorithm (‘Primary’), the number of predictions

it correctly made, followed by the number of its errors that each other algorithm could

correctly predict. The most correct algorithm — ItemItem — can still have 17.3% of its

errors (8.1% of the total predictions) picked up by a single additional algorithm. Table 6.3

shows the cumulative good predictions for the 5 algorithms. This table is computed by

first picking the algorithm that has the most good predictions. The remaining algorithms
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6.3. Relative Errors

are selected and computed by picking the algorithm which has the most good predictions

that no prior algorithm has correctly made and adding it to the table. While ItemItem only

correctly predicts 53.1%, the algorithms together can predict 69.3% of the predictions.

This result provides an initial affirmative answer to RQ2: algorithms differ in which

predictions they get right or wrong. It is also robust to higher thresholds; using a threshold

of 1.0 stars for good prediction scales the ItemItem hit count up and the other hit counts

correspondingly down, but does not change the relative ordering of algorithms.

The ability of the oracle hybrids to outperform single algorithms — even when the

hybrid selects algorithms on a per-user basis — provides further evidence for useful differ-

ences in the errors made by different algorithms.

When selecting algorithms to deploy in an ensemble recommender, it is not necessarily

desirable just to pick the ones that perform the best. If two algorithms are highly correlated

in the errors they make, failing in the same cases, then including both of them will likely

not provide much benefit. In selecting algorithms, we look for the following criteria:

• Unique benefit — individual algorithms should contribute unique benefit with respect

to the other algorithms in the ensemble.

• Distinguishability — it should be possible to figure out how to blend the algorithms

or to select which one to use.

• Tractability — given two algorithms with similar benefit, prefer algorithms that are

less expensive to operate.

In general, we found all algorithms to be highly correlated, as shown in the correlation

matrix in table 6.4. FunkSVD and ItemItem had the highest correlation. Also, if either

of them is used as the primary algorithm, the other is not the best secondary algorithm,

167
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FunkSVD ItemItem Lucene Mean UserUser
FunkSVD 1.00
ItemItem 0.95 1.00
Lucene 0.89 0.91 1.00
Mean 0.90 0.92 0.93 1.00
UserUser 0.93 0.93 0.90 0.94 1.00

Table 6.4: Correlation of algorithm errors.

Algorithm # Correct % Correct Cum. % Correct
FunkSVD 850,139 52.5 52.5
Lucene 153,198 9.5 61.9
UserUser 69,331 4.3 66.2
ItemItem 32,623 2.0 68.2
Mean 16,470 1.0 69.2
Unclaimed 498,850 30.8 100.0

(a) SVD first

Algorithm # Correct % Correct Cum. % Correct
FunkSVD 850,139 52.5 52.5
UserUser 144,986 8.9 61.4
Lucene 77,543 4.8 66.2
ItemItem 32,623 2.0 68.2
Mean 16,470 1.0 69.2
Unclaimed 498,850 30.8 100.0

(b) SVD followed by user-user

Table 6.5: Cumulative correct predictions by algorithm, alternate permutations.

as can be seen in table 6.2; further, generating table 6.3 with FunkSVD first reverses its

position with item-item, putting item-item last among the collaborative filtering algorithms

(see table 6.5(a)). This suggests that ItemItem and FunkSVD tend to make many of the

same mistakes, so using both of them together may not be as useful as combining one of

them with an algorithm that provides substantially more marginal benefit.

The alternate permutations in table 6.5 also show that the greedy approach in table 6.3

does not produce an optimal two-algorithm hybrid: an oracle hybrid of FunkSVD with
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Lucene would achieve a correct prediction rate of 61.9%, and combining FunkSVD with

UserUser beats the ItemItem/UserUser combination.

Algorithms do differ in the errors that they make, and the marginal benefit of each over

the others is subtle. For the ML-10M data set, ItemItem is the best single algorithm, but

optimal oracle switching hybrids of 2-3 algorithms would not include it.

6.4 Comparing by User

The performance of the per-user oracle hybrids — and the diversity of algorithms selected,

as seen in figs. 6.3(b) and 6.3(c) — indicate that, at a high level, the answer to RQ3 is also

‘yes’. Different algorithms do perform better — lower error, more correct predictions —

for different users.

We now want to see if we can distinguish between users for which different algorithms

perform better. To simplify the problem, we consider the question of whether ItemItem will

outperform UserUser for a particular user. Building a model that can successfully predict

the best algorithm for a user may result in a more useful hybrid than using the tuning set to

pick the best algorithm (the pick-by-tuning approach seems likely to overfit the user’s tuning

ratings; modeling over the tuning of many users would hopefully avoid this problem).

Table 6.6 shows two logistic regressions attempting to predict whether item-item will

outperform user-user for each user, using both ‘best RMSE’ and ‘most correct’ as algorithm

selection metrics. When using RMSE to select an algorithm, item-item tends to outperform

user-user for users with many ratings or high variance in their ratings. When using Most

Right, however, item-item does worse for users with many ratings, as well as for users with

a high average rating. When learning both of these models, we held out 20% of the users

as a test set; fig. 6.5 shows the ROC curves of these two models. They do noticeably better
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6.4. Comparing by User

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.6008 0.0811 -32.08 0.0000
LogCount 1.5391 0.0378 40.73 0.0000
RatingVar 0.2190 0.0270 8.11 0.0000

(a) By RMSE

Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.2843 0.1500 48.55 0.0000
LogCount -1.3023 0.0346 -37.60 0.0000

MeanRating -1.0651 0.0307 -34.66 0.0000
(b) By Most Right

Table 6.6: Logistic regressions predicting that item-item outperforms user-user.
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(b) Most Right model (AUC 0.643)

Figure 6.5: ROC of user-user vs. item-item models from table 6.6

than guessing at picking which of the algorithms will do better.

From these analyses, we can see three things:

• Different algorithms do, in fact, do better or worse than others for different users

(answering RQ3 in the affirmative).

• Certain features of the user’s profile can predict with modest success whether one

algorithm will outperform another for that user.
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6.5. Conclusion

• Traditional error metrics and counting correct predictions do not agree on which al-

gorithm is better for a particular user, while they do agree on the relative performance

of algorithms overall.

6.5 Conclusion

In this experiment, we have investigated the errors (mispredictions) made by different rec-

ommender algorithms. We have found that different algorithms make different errors —

where one algorithm misses a prediction, another algorithm may make that prediction cor-

rectly. And we have demonstrated that different algorithms perform better or worse for

different users.

We have also found significant overlap in the errors made by all recommenders we tested,

but particularly item-item CF and FunkSVD. Our data suggest that hybrid recommenders

with limited resources would do better to combine one of these algorithms with a signifi-

cantly different algorithm, rather than combining the two of them.

More work is needed to understand better why the algorithms are performing differently

on different users. For what users is item-item, FunkSVD, or user-user a superior recom-

mender algorithm? We have some results on this question, but they are heavily dependent

on the choice of metrics for identifying the ‘best’ algorithm for a particular user. Given

these two metrics that exhibit significant differences in their assessments of algorithms —

and the choices they yield on a user-by-user basis — we need further study to understand

the implications of measuring recommender error vs. correct predictions in order to know

how best to assess an algorithm’s suitability for a user.

User studies and qualitative investigation of the items and users themselves will likely

be helpful in further elucidating the specific behavior of each algorithm. So far, our work
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has focused only on generic statistics of users and items in the rating set; seeing what actual

items are being mispredicted and collecting user feedback on erroneous predictions or bad

recommendations would hopefully provide further insight into how the algorithms behave.
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Chapter 7

User Perception of Recommender Differences

H  an extensive suite of tools for recommender experimentation and ap-

plied them in two offline contexts, we now complete the arc by investigating how the dif-

ferences between the recommendation solutions we have considered affect the users of the

recommender system. If we are going to engineer nuanced recommender solutions to a

diverse set of user information needs, we need to understand how various recommendation

options differ in ways that relate to their ability to meet users’ needs.

To that end, we now present a user study in which we asked users of the MovieLens

movie recommendation service to provide comparative judgements of the differences they

see in the outputs from common recommender algorithms.1 In the time since we first pub-

lished LensKit, MovieLens has been updated to use LensKit to provide its recommenda-

tions, allowing us to easily plug different algorithms into MovieLens and see how they

perform. At the time of writing, we are also preparing the general release of a new version

of the MovieLens platform, providing an opportunity to conduct an experiment in a context

where the question of user preference among recommender algorithms has real meaning.

The experiment described in this chapter is intended to answer the following questions:

RQ1 How are users’ overall preferences for recommendation lists predicted by the subjec-

tive properties of those lists?
1This work was done in collaboration with F. Maxwell Harper, Martijn C. Willemsen, and Joseph A.

Konstan. It has been accepted for publication in RecSys 2014 [Eks+14].
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RQ2 What differences do users perceive between the lists of recommendations produced

by commonly-used collaborative filtering algorithms?

RQ3 How do objective algorithm performance metrics relate to users’ subjective percep-

tion of recommender outputs?

This experiment asks users to directly compare recommendation lists produced by pop-

ular recommender algorithms. We specifically explore item-item, user-user, and SVD al-

gorithms, looking at user perceptions of accuracy, personalization, diversity, novelty, and

overall satisfaction. Each user provided a first-impression preference between a pair of al-

gorithms, subjective comparisons of the algorithms’ output on our dimensions of interest,

and selected an algorithm for future use. We build a model that predicts both initial user

preference and eventual user choice after more in-depth reflection on the recommendations

using the subjective perceptions and objective measures of the recommender algorithms

and their output.

While this experiment focuses on one application — general-purpose movie recom-

mendation — that is admittedly well-studied, it uncovers subjective characteristics of rec-

ommender behavior that explain users’ selections in a manner that provides a good basis

for generalization, replication, and further validation. We report specific relationships that

can be tested for validity in additional contexts, providing much greater insight into what

aspects of algorithm suitability for movie recommendation are task-specific and what are

more general behaviors.

In addition to answering our immediate questions, the data collected in this survey

should be a useful ground truth for calibrating new offline measures of recommender be-

havior to more accurately estimate how algorithms will be experienced by their users. We

use it perform some of this analysis in section 7.2.4.
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7.1. Experiment Design

Figure 7.1: Screen shot of the experiment interface. Clicking on a movie in the list opens a pop-over
with additional movie details.

7.1 Experiment Design

To assess the differences among various algorithms for recommending movies with explicit

user ratings, we conducted an experiment in which users reviewed two lists of recommenda-

tions and took a survey comparing them. Figure 7.1 shows a screenshot of the experimental

interface.
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// we have a 5-star scale with half stars

domain minimum: 0.5, maximum: 5.0, precision: 0.5

// use user-item personalized mean as the baseline predictor

bind (BaselineScorer, ItemScorer) to UserMeanItemScorer

bind (UserMeanBaseline, ItemScorer) to ItemMeanRatingItemScorer

// just a little mean damping seems to improve things

set MeanDamping to 5

Listing 7.1: Common configuration for recommender algorithms.

7.1.1 Users and Context

We conducted our experiment on users of MovieLens, a movie recommendation service.

The survey was integrated into a beta launch of a new version of MovieLens; we invited

active users to preview the beta with an on-site banner and required them to participate in

the experiment prior to using MovieLens Beta. 1052users attempted the survey, of which

582completed it. Since we limited recruiting to active users, all users had at least 15 ratings

(the median rating count was 473).

7.1.2 Algorithms

For this experiment, we tested three widely-used collaborative filtering algorithms as

implemented in LensKit version 2.1-M2 [Eks+11]. To tune the algorithm parameters, we

used the item-item CF configuration in the MovieLens production environment and values

reported in the published literature [Eks+11; Fun06] as a starting point and refined the

configurations with 5-fold cross-validation over the MovieLens database (using RMSE and

prediction nDCG as our metrics to optimize) and manual inspection of recommender output.

This resulted in the following algorithm configurations:
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// use item-item CF

bind ItemScorer to ItemItemScorer

// use cosine

bind VectorSimilarity to CosineVectorSimilarity

// we'll normalize by item mean, so use the item-by-item builder

bind ItemItemBuildContext toProvider ItemwiseBuildContextProvider

within (ItemItemBuildContext) {

bind VectorNormalizer to MeanCenteringVectorNormalizer

}

// use item mean to normalize ratings when producing scores

within (ItemItemScorer) {

bind UserVectorNormalizer to BaselineSubtractingUserVectorNormalizer

bind (BaselineScorer, ItemScorer) to ItemMeanRatingItemScorer

}

// set up sizes and thresholds

set ModelSize to 4000

set NeighborhoodSize to 20

set MinNeighbors to 2

set ThresholdValue to 0.1

// the global item scorer allows us to ask for similar movies

bind GlobalItemScorer to ItemItemGlobalScorer

within (GlobalItemScorer) {

// MinNeighbors must be 1 to enable "movies like this" on movie details pages

set MinNeighbors to 1

}

Listing 7.2: Item-item algorithm configuration.
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bind ItemScorer to UserUserItemScorer

bind VectorSimilarity to CosineVectorSimilarity

bind UserVectorNormalizer to BaselineSubtractingUserVectorNormalizer

within (UserVectorNormalizer) {

bind (BaselineScorer, ItemScorer) to UserMeanItemScorer

bind (UserMeanBaseline, ItemScorer) to ItemMeanRatingItemScorer

}

bind NeighborFinder to SnapshotNeighborFinder

set NeighborhoodSize to 30

set ThresholdValue to 0.1

set MinNeighbors to 2

Listing 7.3: User-user algorithm configuration.

bind ItemScorer to FunkSVDItemScorer

// FunkSVD will automatically use the user-item baseline, which is correct

set FeatureCount to 50

set IterationCount to 125

Listing 7.4: SVD algorithm configuration.

• Item-item CF [Sar+01] with 20 neighbors, model size of 4000, cosine similarity, item

mean centering, neighbor threshold of 0.1, and requiring 2 neighbors to make a pre-

diction (listing 7.2).

• User-user CF [HKR02] with 30 neighbors, cosine vector similarity between users, and

normalizing user ratings by subtracting the personalized user-item mean, a neighbor

threshold of 0.1, and requiring 2 neighbors to make a prediction; we additionally

applied a small Bayesian damping of 5 to the user and item means for normalization
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(listing 7.3).

• SVD with the FunkSVD [Fun06; Pat07] training algorithm, using 50 features, 125

training epochs per feature, user-item mean baseline with damping of 5, and the

LensKit default learning rate of 0.001 and regularization factor of 0.015 (listing 7.4).

In addition to their specific configurations, each algorithm included a common core con-

figuration (listing 7.1) and additional configuration to connect to the MovieLens database.

For each user, we randomly selected two of the algorithms. For each algorithm, we

computed a recommendation list containing the 10 movies with the highest predicted rating

among those the user had not rated, sorted by predicted rating. We presented these lists as

‘List A’ and ‘List B’ (the ordering of algorithms was randomized).

Most studies that measure such user experiences, employ a between-subjects design in

which the users only see one condition (i.e. one algorithm at the time). Such between-

subject designs are more realistic of real world experiences. However, in our present ex-

periment we are primarily interested in detecting differences between algorithms, some of

which may be quite subtle. If users evaluated each algorithm’s output separately, their expe-

rience with that algorithm would not be related to another; this is problematic as evaluation

is a naturally relative activity: absolute judgments are much more difficult than relative

judgments and less sensitive to small differences [HZ10]. Therefore we chose to evalu-

ate these algorithms with a simultaneous within-subjects design in which our participants

jointly evaluate two out of three algorithms side-by-side.

In internal pre-testing, the user-user and SVD algorithms often suggested very obscure

movies, making it likely that they would provide recommendations that the user would be

entirely unfamiliar with; while we want to measure novelty, users are limited in their ability

to judge completely unfamiliar lists. There are potentially elegant solutions to this difficulty
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involving learning-to-rank approaches [Liu07] and hybrid algorithms, but for our present

purposes we want to test the algorithms in their pure form. Therefore, we limited each

algorithm to recommending from the 2500 most-rated movies in MovieLens (about 10% of

MovieLens’s entire collection), making it more likely for the user to have at least heard of

some of the recommended movies. This adjustment may limit effect sizes (e.g. decreasing

the ability of a recommender to produce very novel recommendations), but should allow

each algorithm to still demonstrate its general behaviors.

Not all algorithms could produce 10 recommendations for all users. If a user could not

receive 10 recommendations from each algorithm, we exclude them from the analysis.

7.1.3 Showing Predictions

Algorithms will not necessarily generate scores on the same portions of the rating scale. For

example, one algorithm may tend to predict 4.5–5 stars, while another algorithm may be

more conservative and predict 3.5–4.5 stars. Since MovieLens usually shows its predicted

rating with recommendations, this could have a confounding effect if the predicted rating

affects the user’s perception of the recommendations. To control for this, we assigned each

user randomly to one of the following prediction conditions:

• Show no predictions (just the list of recommended movies).

• Show a standard, unadjusted prediction.

• Show a normalized prediction. In this condition, we predicted the first 3 movies at 5

stars, the next 4 at 4.5, and the last 3 at 4 stars.

If predicted ratings do not affect the user’s perception of the recommendation lists, then

there should be no difference in response between these conditions and we can average

across them in the final analysis.
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7.1.4 User Survey

Our survey consists of four parts. The first question, visible in fig. 7.1, asks users which list

of recommendations they prefer, based on their initial impression. 5 options are available,

with the extremes labeled ‘Much more A than B’ and ‘Much more B than A’.

Following initial preference are 22 questions about various aspects of the lists, designed

to measure the user’s perception of the recommendation lists across five factors:

Acc Accuracy — the recommender’s ability to find ‘good’ movies.

Sat Satisfaction — the user’s overall satisfaction with the recommender and their percep-

tion of its usefulness.

Und Perceived personalization (‘Understands Me’) — the user’s perception that the rec-

ommender understands their tastes and can effectively adapt to them.

Nov Novelty — the propensity of the recommender to suggest items with which the user is

unfamiliar.

Div Diversity — the diversity of the recommended items.

For each factor, we want 4–5 questions. Factor analysis requires 3 questions for the math

to work out. Extra questions give us some room for error in case one of our questions does

not ‘work’. A question doesn’t work if it is unclear so that users do not answer it consis-

tently, or if it evokes responses that are not sufficiently consistent with the responses to other

questions in its target factor. Factor analysis will indicate how well each question measures

its target factor; low-loading questions will be discarded. We want enough question so that

we have enough to make the factor analysis work after discarding questions with low factor

loadings.
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Figure 7.2: Hypothesized mediating relationships.

To develop the comparative questions, we started from the questions that Knijnenburg

et al. [Kni+12] have found to work well in their previous experiments. They have published

the complete list of questions, along with their target factors, from multiple experiments

across multiple domains, and indicated whether each question loaded well on its factor.

This gives us a bank of questions that have already been found to effectively measure user

perception of recommendation in other experiments, reducing the likelihood that a question

will not work. Table 7.1(a) shows the full list of questions for each factor.

We also hypothesized mediating relationships between these factors, shown in fig. 7.2.

We expect the user’s selection to be driven by satisfaction and perceived personalization,

with personalization also having an impact on satisfaction; satisfaction, in turn, we hypoth-

esize to be affected by the accuracy, novelty, and diversity. These hypotheses are theory-

driven, coming from the psychological models of human preference and decision-making

and from the relationships found in previous studies [Kni+12]. We also hoped to target a

separate serendipity factor, a combination of novelty and accuracy that would mediate nov-

elty’s influence on satisfaction, but we had difficulty writing questions we thought would

reasonably separate serendipity from novelty and the survey was already quite long with 5

latent factors.
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After the main body of questions, we ask users which algorithm they would like to use

by default once MovieLens gains the ability to support multiple recommender algorithms in

parallel (a feature we are planning to develop in the coming months). This question is forced-

choice, requiring users to pick one of the two algorithms. It also carries some consequence

for users: while they will be able to switch algorithms in their user settings page without

much difficulty, the algorithm they select will be providing their default recommendations

in the future.

7.1.5 Objective Metrics

In addition to soliciting users’ subjective perceptions of the recommendations, we com-

puted objective measures of the algorithms’ behavior with respect to accuracy, novelty,

and diversity.

We estimate the accuracy of each algorithm by computing the RMSE of using it to

predict each user’s last 5 ratings prior to taking the survey, averaging the errors per user. To

estimate novelty, we take the simple approach of computing the mean popularity rank of

the items recommended to the user (fig. 7.4); this creates an ‘obscurity’ metric, where high

values correspond to lists with more obscure items.

We compute diversity with intra-list similarity [Zie+05] using cosine between tag genome

vectors [VSR12] as the itemwise similarity function and normalizing the final metric so that

a list of completely similar items has a score of 1; we exclude items for which tag genome

data is not available (no list required us to exclude more than 2 items); fig. 7.4 shows these

values.

To convert the metrics into comparative measures, we take the log ratio of the objective

metric values for the two recommendation lists presented to a user2. This produces a single
2We also experimented with computing raw differences, but generally found the log ratio to be a better
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..I-I v. U-U.

SVD v. U-U

.

Obsc. Ratio

.

Sim. Ratio

.

Acc. Ratio

.

Novelty

.

Diversity

.

Satisfaction

.

1st Imp.

.

Final Choice

.

1.042 ± 0.149

.
0.835 ± 0.153

.

0.189 ± 0.028

.

0.223 ± 0.028

.

1.309 ± 0.206

.

−51.756 ± 8.558

.

1.057 ± 0.509

.

0.184 ± 0.056

.

0.270 ± 0.061

.

−0.700 ± 0.073

.

0.664 ± 0.043

.

0.542 ± 0.037

.

−0.249 ± 0.038

.

0.093 ± 0.031

Figure 7.3: Overall SEM with bootstrapped standard errors. All displayed coefficients are signifi-
cantly nonzero (𝑝 < 0.01). The baseline condition is I-I v. SVD; positive values & coefficients favor
the right-hand algorithm (SVD or U-U).

value for a pair of algorithms or recommendation lists that we can attempt to correlate with

the users’ subjective comparative judgements.

7.2 Results

582 users completed the study over 81 days. Table 7.2 shows how many participated in

each algorithm condition, along with their final choice of algorithm. Users generally se-

lected both item-item and SVD over user-user (𝑝 < 0.0001), but there was no statistically

significant difference in the proportion of users choosing between item-item vs. SVD. Ta-

ble 7.1(b) summarizes the responses to each of our questions by algorithm condition, and

fig. 7.4 shows the objective measures of each algorithm’s output.

We observed no significant effect of either the ordering of algorithms or of the prediction

condition, so we exclude those from the remainder of the analysis.

predictor.
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7.2. Results

Condition (𝐴 v. 𝐵) 𝑁 Pick 𝐴 Pick 𝐵 % Pick 𝐵 𝑝
I-I v. U-U 201 144 57 28.4% 0.000
I-I v. SVD 198 101 97 49.0% 0.831
SVD v. U-U 183 136 47 25.7% 0.000

Table 7.2: Final algorithm selection by condition. 𝑝-values are for two-sided proportion tests, 𝐻0 ∶
𝑎/𝑏 = 0.5.
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Figure 7.4: Objective recommendation list properties.

7.2.1 Response Model

To answer our more detailed research questions about the factors at play in users’ choice

of algorithms, we subjected the survey results to confirmatory factor analysis (CFA) and

structure equation modeling (SEM). We used Lavaan [Ros12] for R [R C14] to compute

the CFA and SEM, treating all question responses as ordinal variables. Each question is

mapped to the factor it was designed to target. Table 7.1(c) shows the question/factor load-

ings from both the initial CFA and a simplified SEM derived from it. In the full CFA, there

are several questions that have very low explanatory power (such as ‘which recommender

more represents mainstream tastes?’ with 𝑅2 = 0.006); in addition, the Accuracy, Satis-

faction, and Understands Me factors are very highly correlated (correlation coefficients in
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7.2. Results

excess of 0.9), so we cannot legitimately consider them to be measuring different constructs

in this experiment. We simplify the model by removing the Accuracy and Understands Me

factors (we retain Satisfaction because it has the highest explanatory power, as measured

by the Average Variance Extracted, and all 5 of its questions load strongly), and removing

poorly-loading questions from Novelty. Also, in our theoretical model for designing the sur-

vey (fig. 7.2), satisfaction depended on both accuracy and perceived personalization. Our

criteria for removing questions are based on the coefficients and 𝑅2 values for the questions,

as well as the AVE (Average Variance Extracted) for the factor. We want each factor to have

high extracted variance, and each question to load strongly (high 𝑅2) on its factor.

We then expand the simplified CFA into an SEM, which we call the Overall SEM, by

adding structural relationships between factors, regressing them against the experimental

conditions and objective metrics, and regressing the user’s first impression and final selec-

tion against the experimental factors. The final SEM is built by first building a mega-SEM

with many of the possible relationships, including ones that theory suggests should not ex-

ists, and then removing relationships that do not achieve statistical significance or have very

small effect sizes. This gives us a structural model with significant mediating relationships

between factors (e.g. the impact of diversity on choice can be explained by its impact on

satisfaction). This model is hopefully consistent with our theory — and in this experiment,

the theory and results line up reasonably well — but we also test for relationships that we

did not expect, such as the direct effect of novelty on the user’s first impression.

Figure 7.3 and table 7.1(c) show the structure and question/factor loadings in this overall

model. The overall SEM has good fit (𝜒2
139 = 229.5, 𝑝 < 0.001, CFI = 0.999, TLI = 0.998,

RMSEA = 0.033). The model uses standardized factor scores, so a coefficient for the effect

on or of a factor measures the effect in standard deviations of the factor. We use item-item

vs. SVD as the baseline condition, encoding the item-item/user-user and SVD/user-user
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7.2. Results

Sat =~ SatFind + SatMobile + SatRecommend + SatSat + SatValuable

Div =~ DivMoods + DivSimilar + DivTastes + DivVaried

Nov =~ NovUnexpected + NovFamiliar + NovUnthought

PopRatio ~ CondIIUU + CondSVDUU

Div ~ Nov + SimRatio

Nov ~ CondIIUU + CondSVDUU + PopRatio

Sat ~ Nov + Div + PredAccRatio

FirstImpression ~ Sat + Nov

PickedB ~ Sat + FirstImpression

Listing 7.5: Lavaan code for the overall SEM.

conditions with dummy condition variables. The Lavaan code to define the overall SEM is

shown in listing 7.5; appendix B contains the full Lavaan output for all models.

7.2.2 RQ1: Predicting Preference

To address RQ1, we consider the impact of the factors (Nov, Div, and Sat) on the user’s first

impression of the recommendation lists and on their final choice of algorithm (see fig. 7.3).

Most users who preferred one algorithm over the other at their first impression picked that

algorithm in the final forced-choice question.

The only significant predictor (besides first impression) of the user’s final choice of

algorithm was their relative satisfaction with the two recommendation lists. Users tended

to pick the algorithm with which they expressed more satisfaction.

Satisfaction in turn is influenced by the novelty (negatively) and diversity (positively) of

the recommended items. Novelty also has a small positive impact on diversity, suggesting

that there is an upside to novelty (as it correlating with more diverse lists, which correlates
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positively with satisfaction) but a strong downside (users don’t like recommendation lists

full of unfamiliar items).

In addition to the its indirect effect through satisfaction, novelty had an additional nega-

tive influence on the user’s first-impression preference. This means that novelty has a strong

initial impact on user preference. However, after the user has made their first judgement,

answered the more in-depth questions, and finally selected an algorithm, the direct impact

of novelty went away and their final choice depended primarily on satisfaction. Novelty is

still a significant negative influence, but it is mediated through satisfaction.

7.2.3 RQ2: Algorithm Performance

In RQ2, we want to understand how the algorithms themselves compare on relative satis-

faction, diversity, novelty, and user preference as exhibited in their choice of algorithm.

Table 7.2 summarizes the final choice performance of the three algorithms: as measured

by users picking an algorithm for use, user-user clearly loses, and item-item and SVD are

effectively tied.

Table 7.1(b) provides some insight into users’ perception of the relative characteristics

of the algorithms. Across most questions, item-item and SVD are indistinguishable (user re-

sponses are symmetrically distributed about the neutral response). Item-item shows slightly

more diversity than SVD. The other algorithm pairings show more differences across the

board, with the exception of item-item and user-user being indistinguishable on diversity.

Our overall SEM (fig. 7.3) and related factor analysis incorporate the experimental con-

dition, but its impact is difficult to interpret due to the comparative nature of the experiment.

To better understand each pair of algorithm’s relative performance, we reinterpret our ex-

periment as three between-subjects pseudo-experiments. Each of these pseudo-experiments

uses one of the algorithms as a baseline and compares the other two algorithms on their per-
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Baseline Tested % Tested > Baseline 𝑝

ItemItem SVD 48.99 0.0000UserUser 28.36

SVD ItemItem 51.01 0.0000UserUser 25.68

UserUser ItemItem 71.64 0.6353SVD 74.32

Table 7.3: Split experiment summary. 𝑝-values are testing the null hypothesis that the user picked
the tested algorithm over the baseline the same proportion of the time.

formance and behavior relative to the baseline; the experimental treatment is the choice of

algorithm to compare against the baseline We will refer to this algorithm as the tested algo-

rithm.

Randomization ensures that the behavior characteristics of the baseline algorithm are

likely to be evenly distributed between the two sets of users encountering that algorithm,

so we can (with some limitations) interpret relative measurements of one algorithm’s com-

parison with the baseline as absolute measurements of that algorithm’s behavior for the

purposes of comparing with measurements of another algorithm against the same baseline.

Table 7.3 shows the layout and selected algorithm results from this interpretation. The

first pair of rows describes one of the three pseudo-experiments. Examining all users as-

signed to one of the two conditions involving item-item CF, we use item-item as the baseline

and ask how often users picked user-user or SVD over the baseline. We can apply this in-

terpretation to all questions and factors, not just selection. This allows us to make cleaner

inferences at the expense of some statistical power.

For each experiment, we re-analyzed the data using SEM and basic regressions to pre-

dict the user’s relative preference and final choice. We used the factor loadings from the

overall SEM and re-learned the relationship between the factors and condition, as well as
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the strength of the relationships between factors themselves and their ability to predict the

user’s impression and choice. We also omitted the objective metrics from these SEMs in

order to focus on the subjective differences between the algorithms. For brevity, we do not

include a separate diagram for each experiment; the model structures are a simplification of

fig. 7.3.

In addition to the condition, we also consider the number of ratings in the user’s history

prior to joining the experiment as a proxy for their level of experience. It is possible for

algorithms to perform differently for different users, or for more experienced users to judge

recommendation lists differently. We computed the median number of ratings for the users

participating in the experiment and set a condition variable indicating whether a particular

had ‘many’ or ‘few’ ratings relative to the median.

SVD vs. User-User

Users perceived user-user’s recommendations to be more novel than SVD’s (coef. 0.953,

𝑝 < 0.001). They also reported user-user to be producing more diverse recommendation

lists (coef. 0.312, 𝑝 < 0.001). The effect on novelty was substantially stronger; combined

with novelty’s strong negative influence on preference, impression, and choice, users gen-

erally found SVD’s recommendations more satisfactory and desirable than user-users. The

effect of novelty on diversity was not present in this model; novelty only affected satisfac-

tion directly.

As explained above, these results are from comparative judgements between the output

of the tested algorithm (SVD or user-user) and the baseline algorithm (item-item). However,

due to randomization, we assume that there are no important differences in item-item’s

output between the users comparing it against SVD and those comparing it against user-

user. Therefore, we can reasonably make inferences about the relative behavior of SVD
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and user-user. These results are consistent with the raw survey response data for direct

comparisons between SVD and user-user (table 7.1(b)), providing further support for their

validity. They are also consistent with the objective measures of obscurity and diversity

(fig. 7.4)

Users selected SVD significantly more often than user-user (table 7.3), consistent with

the results from users directly comparing SVD and user-user (table 7.2).

Item-Item vs. User-User

We found no significant difference in diversity between item-item and user-user CF; this is

consistent with the raw results of direct comparison of these two algorithms in table 7.1(b).

User-user produced more novel recommendation lists than item-item (coef. −1.563,

𝑝 < 0.001). This effect interacted with user experience (rating count); for high-rating users,

user-user’s recommendations were not as novel as they were for low-rating users. This

moderating effect was small, however, and user-user was significantly more novel than item-

item even for high-rating users. There was no significant difference in item-item’s novelty

performance between low- and high-rating users.

Item-Item vs. SVD

Item-item produced slightly more diverse recommendations than SVD (coef. −0.260, 𝑝 <
0.001); this is consistent with the response distributions in table 7.1(b) as well as the differ-

ence in intra-list similarity (fig. 7.4). However, diversity did not have a significant influence

on satisfaction in this pseudo-experiment: the only significant predictor of satisfaction was

novelty.

The number of ratings the user had in their history prior to the experiment had a signif-

icant effect on the algorithm: for high-rating users, both algorithms were more novel than
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user-user. Since item-item and SVD did not have significantly different perceived novelty,

this effect is reflecting user-user’s decreased novelty for high-rating users. Whether there

is an additional increase the novelty of item-item and SVD for high-rating users, or just a

decrease in user-user’s novelty, is beyond this experiment’s capability to measure.

7.2.4 RQ3: Objective Metrics

To address RQ3, we consider in more detail the relationships between the objective met-

rics and subjective factors. Figure 7.4 shows the distributions of all objective metrics we

computed.

The raw distributions of novelty and diversity measurements are consistent with the

user survey results. User-user produces lists with less popular (and therefore likely more

novel) items than SVD or item-item. SVD tends to produce somewhat less diverse recom-

mendation lists. All three algorithms had comparable retrospective accuracy, with SVD

having a slight edge. Popularity/obscurity was the only objective metric that we found to

significantly differ between conditions in the overall model.

Each objective metric was a statistically significant predictor of its corresponding sub-

jective factor (fig. 7.3) and no other factor. This means that there is good correspondence

between the subjective and objective measures of these three concepts; also, the effect of the

objective measures on final choice is completely mediated by their impact on the subjective

measures. All indirect effects of objective measures on final choice are significant.

This means that predictive accuracy, for example, does affect the user’s final choice, but

only through the increased satisfaction that it produces. Further, the impact of novelty and

diversity on satisfaction means that after controlling for predictive accuracy, diversity and

novelty still have significant impacts on user satisfaction.

The direct effects of condition on novelty, in addition to the effect mediated through
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objective obscurity, suggest that user-user is producing lists that users perceive to be more

novel beyond the sense of novelty that our objective metric can capture.

Diversity and Similarity Metrics

Tag genome similarity is not the only way that we can measure the similarity of items. We

can also measure them by comparing the similarity of rating vectors or latent feature vectors,

for instance. Since this experiment provides us with data on user-perceived diversity in a

context where we also have access to the full ratings database and user information, we

want to use the user judgements to assess the relative ability of different similarity metrics

to capture notions of similarity that matter to users.

We build item similarity metrics by taking the cosine similarity over the following vector

spaces:

• Tag genome

• Ratings, centered by item mean

• Latent feature vectors (extracted from the SVD recommender)

For rating-based similarity, we ignored users that did not rate both items, so the re-

sulting similarity function is effectively the Pearson correlation between the item vectors

without accounting for rating variance. All similarity functions were integrated into the

same normalized intra-list similarity metric described in section 7.1.5.

All three metrics were well but not perfectly correlated; genome and rating had a corre-

lation of 0.69, while latent feature correlation’s with each was around 0.8.

Tag genome was the best single predictor of user-perceived diversity, as judged by over-

all model fit and strength of the coefficient’s 𝑧 test statistic (all regressions were significant,
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Sim. Metric Correlation SEM Fit
Genome Rating Lat. Feat. Div Coef. RMSEA

Genome 1.0 0.698 0.791 -0.345 0.0335
Rating 1.0 0.821 -0.329 0.0376
Lat. Feat. 1.0 -0.276 0.0303

Table 7.4: Summary of similarity metrics for measuring diversity

𝑝 < 0.001). Latent features produced a slightly better overall model fit, but the direct

relationship between objective similarity and user-perceived diversity was worse. Rating

similarity had a worse model fit (RMSEA = 0.038) but only slightly worse direct relation-

ship.

If both genome and rating similarities are included in a model, they both achieve sig-

nificance (𝑝 = 0.001 and 𝑝 = 0.003, respectively), although the overall model fit suffers

significantly (RMSEA = 0.058).

This suggests that there is significant agreement between these different means of com-

puting similarities, but the tag genome [VSR12] seems to be the best predictor of user-

perceived diversity by a small margin.

Table 7.4 summarizes the relationships of diversity computations based on different

similarity metrics and their impact on the measurement SEM.

7.3 Discussion

We set out to measure user perception of various interesting properties of the output of dif-

ferent recommender systems in a widely-studied domain. Our experiment uncovered medi-

ation effects of novelty, diversity, satisfaction on users’ choice of recommender algorithms.

In this section, we highlight some of the key findings.
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7.3.1 Effect of Novelty

One of the most striking things we found is that the novelty of recommended items has a

significant negative impact on users’ perception of a recommender’s ability to satisfactorily

meet their information needs. This effect was particularly strong in its impact on the user’s

first impression of an algorithm, and was present even though we restricted the depth of the

long tail into which our algorithms could reach.

This suggests that recommender system designers should carefully watch the novelty

of their system’s recommendations, particularly for new users. Too many unfamiliar rec-

ommendations may give users a poor impression of a particular recommender, potentially

driving them to use other systems instead. Dialing up the novelty as the user gains more

experience with the system and has had more time to consider its ability to meet their needs

may provide benefit, but our results cannot confirm or deny this. It is worth noting that

the users in our study are not inexperienced with movie recommendation in general and

MovieLens in particular, and their first impression of recommendations heavily influenced

by novelty.

Our results complement the notion that that trust-building is an important goal of a

recommender in the early stage of its relationship with its users [MRK06b], providing data

on some factors that may be important in the trust-building process. They are also consistent

with previous results finding that novelty is not necessarily positively correlated with user

satisfaction or adoption of recommendations [CH08].

7.3.2 Diversity

We have also demonstrated that the diversity of recommendations has a positive influence

on user choice of systems for general-purpose movie recommendation. Diversity is often

framed as being in tension with accuracy, so that accuracy must be sacrificed in order to
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obtain diverse recommendation lists [Zie+05; ZH08; Zho+10], and many diversification

techniques do result in reduced accuracy by traditional objective measures. The strong cor-

relation of perceived accuracy and satisfaction in our results provide evidence that there

may not be such a trade-off when considering user perception instead of traditional accu-

racy metrics. This is consistent with other recent work on diversity that finds it to be a

valuable component of choice [Bol+10; WGK14] and that it improves users’ perception of

the accuracy or quality of recommendations [Kni+12].

The influence of novelty and diversity on satisfaction even after controlling for predictive

accuracy provides direct, quantitative evidence for subjective but observable characteristics

of recommendation lists that affect user satisfaction and choice.

Diversity was also mildly but positively influenced by novelty.

Finally, our data suggest that the computing item similarities using the tag genome maps

better to user-perceived list diversity than rating or latent feature similarity, but we do not

advise relying very strongly on this result at present. Its advantage is not very strong, by

what we have been able to measure thus far, and more study is needed to more directly

understand the mapping of similarity functions to user perception.

7.3.3 Algorithm Performance

When it comes to comparing the particular algorithms that we tested, item-item and SVD

performed very similar, with users preferring them in roughly equal measure. We do not

yet have insight into whether there are identifiable circumstances in which one is preferable

over the other. It may be that one works better for some users than others; it may also be

that their performance is roughly equivalent, and one does not work significantly better. The

difference in the diversity of SVD and item-item, however, provides evidence that the two

algorithms are doing something interestingly different.
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User-user is the clear loser in our tests. Its predictive accuracy was comparable to that

of the other algorithms, but it had a significant propensity for novel recommendations that

hurt both users’ expressed satisfaction with its output and their interest in using it in the

future. The lack of a significant independent effect of user-user condition on satisfaction

or selection suggests that the increased novelty is the primary cause of user-user’s poor

subjective performance.

Finally, all three algorithms had similar predictive accuracy, but users still had strong

preferences between some pairings. However, users selected item-item and SVD in almost

equal numbers even though SVD had slightly higher predictive accuracy. This provides

additional evidence that, at least beyond a certain point, offline metrics fail to capture much

of what will impact the user’s experience with a recommender system.

7.3.4 Limitations and Generalizability

This experiment does have certain limits. While the comparative setup allows us to measure

nuanced differences in recommender behavior, it cannot discern between certain kinds of

changes. If, for example, the difference in perceived novelty between user-user and item-

item decreases for some users, we cannot tell if that is because user-user is less novel for

those users, item-item is more novel, or some characteristic of those users simultaneously af-

fects the novelty of both algorithms in opposite directions. A comparative study of this type

also cannot distinguish between to recommenders being equally bad and equally good. This

is an important trade-off in the experimental design, and our results should be integrated

with the results from other studies (both existing and yet-to-be-done) in non-comparative

settings to paint a fuller picture of the behaviors each algorithm exhibits. This is an impor-

tant direction of future research.

Also, this experiment has focused on movie recommendation with experienced users,
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studying three widely-used algorithms and commonly acknowledged recommendation char-

acteristics. But we need a general understanding of algorithm behavior to meet the goals of

recommender engineering. This experiment, therefore, raises as many questions as it an-

swers. Under what circumstances, for instance, do users want diversity or eschew novelty?

Does user-user generally have a high degree of novelty, or is that a property that emerges

when it is applied to movies but may not be present in other domains such as conference

co-attendees?

We believe the structure of our experiment and analysis provide a good starting point for

generalizing and further validating our results. The structural models have allowed us to de-

compose users’ overall choices and responses into constituent components with mediating

relationships. This allows further studies in other contexts to specifically target those rela-

tionships, and should provide a framework for understanding how other contexts differ or

remain the same. For example, suppose a study on another user task or with users with dif-

ferent characteristics find that user-user still provides exceedingly novel recommendations,

but users like the recommendations it provides. Such a study would be evidence for user-

user’s general novelty, and that the strong negative influence of novelty is task-dependent.

Also, using the data from this and other surveys to calibrate offline metrics, as we have

done with diversity metrics, will hopefully provide us with a very valuable set of tools for

more general explorations in recommendation. To be sure, these metrics also need to be

validated in multiple domains and tasks — a good movie diversity measurement may not

be good for books, research articles, or legal briefs — but there are many readily-available

means, some of which we have explored, for extending the impact of this work beyond its

immediate context.
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Chapter 8

Conclusion

I  , we have put forward a vision of engineering recommender systems from

well-understood principles and made several contributions laying a foundation for the re-

search needed for this vision to realized. These contributions include:

• LensKit, a software package for reproducible recommender systems research, capable

of recreating existing research and supporting a wide array of recommender experi-

ments (including both offline evaluations and research projects involving deployment

into production services). It enables reproducible research on a wide range of algo-

rithms, metrics, data sets, and applications.

• Offline experiments on recommender system configuration choices and the impact of

metrics on those choices. We have found new best practices for configuring classic

collaborative filtering algorithms and showed that using rank accuracy instead of pre-

dictive accuracy does not have significant impact on configuration choices, but using

a top-𝑁 evaluation metric does. We have also developed a systematic method for

tuning item-item collaborative filtering, and reported the results of our attempts to do

the same for the FunkSVD algorithm. This work provides researchers and developers

with new insights into how to tune recommender algorithms, helping to decrease the

search space of recommender solutions.
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• An offline experiment in the errors made by different recommender algorithms, show-

ing that having the best prediction accuracy (RMSE) does not necessarily mean that

an algorithm will get the most predictions correct in a user-visible fashion, and that

item-item and user-user collaborative filtering mispredict different ratings. This ex-

periment provides additional evidence that recommender algorithms differ in ways

that can possibly be exploited to improve recommender systems’ ability to serve their

users.

• A comparative user study of collaborative filtering algorithms, showing the following:

– Perceived novelty and diversity affects user satisfaction with a movie recom-

mender algorithm, and satisfaction in turn predicts the algorithm they will choose.

– Too much novelty makes users dissatisfied with a recommender algorithm.

– Novelty has a particularly strong negative effect on users’ first impression of a

recommendation list, whereas their choice after more detailed consideration of

the list depends more on satisfaction.

– Offline metrics can predict some of the user-perceived novelty, diversity, and

satisfaction, but not a substantial amount.

– User-user collaborative filtering produces substantially more novel recommen-

dations than item-item or SVD.

This study has also identified particular relationships between aspects of user percep-

tion of recommendations that can be tested, validated, and nuanced in further studies.

In support of our software development work, we have also developed a new approach

to using dependency injection to configure object-oriented software, allowing LensKit to
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support arbitrarily complex recommender configurations by composing individually simple

components. This technique improves on previous dependency injection systems in two

significant ways:

• It exposes component configurations as first-class objects that can be manipulated

and analyzed to enable a set of rich functionality on top of the configured systems (in

our application, recommender algorithms).

• Its configuration language and dependency resolution algorithm allow for compo-

nents to be arbitrarily composed. Previous solutions either required component im-

plementations to be aware of the ways in which they might be reused and provide

appropriate qualifiers on their dependencies — often requiring many extra imple-

mentations for different composition scenarios — or verbose configuration.

8.1 Planned Work

In the user experiment in chapter 7, we told users that we will be supporting multiple algo-

rithms in MovieLens. That feature will hopefully be deployed in the near future, and after

it is deployed we will look at user behavior with the different recommenders. In particular,

we want to know if users continue to use the recommender they said they preferred in our

study over the long term, and if there are differences in user retention, activity, and rating

patterns between the different algorithms.

On LensKit, there is a great deal of work to be done in building new evaluation tech-

niques, algorithms, metrics, and improving the user experience of the software. Our next

development priorities include:

202



8.1. Planned Work

• Improving ease-of-use through making better use of existing software, writing con-

venience APIs, and providing more tutorial documentation and examples.

• Decreasing LensKit’s direct inclusion of specialized but generally-useful infrastruc-

ture, such as the data structures and evaluation script processor, by either replacing

them with off-the-shelf components (we want to integrate the evaluator with the Gra-

dle automation tool to reuse its task and project management support) or spinning

them off into stand-alone projects (several of LensKit’s data structures and some of

the data processing code in the evaluator would be useful as general-purpose libraries

and Gradle extensions).

• Improving and testing support for recommendation and evaluation with non-rating

data.

• Implementing dynamic learning rates and Bayesian optimization for iterative meth-

ods.

• Finishing development of a web service to expose LensKit’s capabilities to non-Java

systems via an HTTP REST API.

• Integrating with GraphLab1 to make their array of high-performance machine learn-

ing algorithms available as LensKit recommenders.

One particular problem for LensKit in its current state is the complexity of selecting,

configuring and tuning a recommender algorithm. LensKit is a complex piece of software,

and so far our development effort has focused on making it possible to control and configure

its various options. We hope to address the ease-of-use problem by providing a library of
1http://graphlab.com
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well-documented example configurations and by developing tools to make the configuration

options more discoverable and better-documented. A GUI tool for viewing and creating

configurations that allows the user to see the available options for different configuration

points would be very helpful. Further work on automatic parameter tuning would also help

alleviate some of the configuration burden.

8.2 Further Ideas

The vision of recommender engineering requires a great deal of further research. We need

to explore what makes recommendation successful in a wide range of domains and tasks.

These studies need to be designed to understand why a particular recommendation approach

performs well or poorly, not just that it does. Understanding mediating reasons for recom-

mender performance — behavior of the algorithm, properties of the domain, characteristics

of the user or task — will greatly aid in generalizing the results and developing a sys-

tematic science of recommendation. This can be done in both online and offline settings.

Carefully-designed user studies, factor analysis, structural equation modeling are powerful

tools for understanding the ‘why’ of user perception of the recommender. Offline exper-

iments, though, can also be very useful if they are designed to elucidate what it is that

different algorithms do differently. Comparing solely on accuracy does not paint a broad

picture of algorithm performance and suitability.

One promising technique for better understanding recommender behavior in offline set-

tings is temporal evaluation [LHC09]. We hope to add temporal evaluation support to

LensKit in coming years and investigate more deeply the relative behaviors of different

algorithms at different points in the lives of users, items, and systems. There is also much

more work to be done to develop offline experiment methodologies and metrics to answer
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interesting questions about algorithm behavior.

We would also like to see the problem of systematic parameter tuning explored more

thoroughly, and eventually automated. Efficient, automatic mechanisms for optimizing rec-

ommenders and tuning their hyperparameters will reduce the search space that a recom-

mender developer must consider. One key question that remains is the use of subsampling:

can some parameters be tuned by using a subset of the data? If so, what ones?

8.3 The Road Ahead

The work presented in this thesis is only the starting point of the research necessary to

put recommender engineering and development on a solid, well-understood footing. We

hope, through further development on and research with LensKit along with additional ex-

periments in running systems, to continue to contribute to this work. It will also require

substantial work from researchers with access to other user bases in other applications and

domains.

Even if it ultimately turns out that recommendation is too noisy of a problem, so that

we can never arrive at a definitive understanding of how to build optimal solutions to arbi-

trary recommendation tasks, it is our opinion that the goal is still worthwhile. The research

needed to take us in that direction — indeed, to determine that the problem is, in the long

run, insoluble — will greatly improve our understanding of how people interact with recom-

mender systems (and related systems, such as information retrieval and information filtering

tools), and factors that influence the success or failure of particular recommender applica-

tions. We look forward with great anticipation to the discoveries yet to be made in pursuit

of a systematic science of recommendation.

205



Bibliography

[Ama11] Xavier Amatriain. Recommender Systems: We’re doing it (all) wrong.
Technocalifornia. Apr. 7, 2011. :
http://technocalifornia.blogspot.com/2011/04/recommender-systems-were-

doing-it-all.html (visited on 05/17/2011).
[Ama12] Xavier Amatriain. Netflix Recommendations: Beyond the 5 stars (Part 1).

The Netflix Tech Blog. Apr. 6, 2012. :
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-

stars.html (visited on 05/21/2014).
[AMT05] Paolo Avesani, Paolo Massa, and Roberto Tiella. “A trust-enhanced

recommender system application: Moleskiing”. In: ACM SAC ’05. ACM,
2005, pp. 1589–1593. : 1-58113-964-0. : 10.1145/1066677.1067036.

[Apa11] Apache Software Foundation. Lucene. Version 3.5.0. Nov. 2011.
[AZ12] Gediminas Adomavicius and Jingjing Zhang. “Stability of Recommendation

Algorithms”. In: ACM Trans. Inf. Syst. 30.4 (Nov. 2012), 23:1–23:31. :
1046-8188. : 10.1145/2382438.2382442.

[BDO95] Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien. “Using Linear
Algebra for Intelligent Information Retrieval”. In: SIAM Review 37.4 (Dec.
1995), pp. 573–595. : 00361445.

[Bel12] Alejandro Bellogin. “Performance prediction and evaluation in
Recommender Systems: an Information Retrieval perspective”. Doctoral
Thesis. Madrid, Spain: Universidad Autónoma de Madrid, Nov. 2012.

[BHK98] John S Breese, David Heckerman, and Carl Kadie. “Empirical Analysis of
Predictive Algorithms for Collaborative Filtering”. In: Proc. UAI ’98. 1998,
pp. 43–52.

[BL07] James Bennett and Stan Lanning. “The Netflix Prize”. In: Proc. of KDD
Work on Large-Scale Rec. Sys. 2007.

[Bla03] Norman W. H. Blaikie. Analyzing quantitative data: from description to
explanation. SAGE, Mar. 6, 2003. 376 pp. : 9780761967583.

206

http://technocalifornia.blogspot.com/2011/04/recommender-systems-were-doing-it-all.html
http://technocalifornia.blogspot.com/2011/04/recommender-systems-were-doing-it-all.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://dx.doi.org/10.1145/1066677.1067036
http://dx.doi.org/10.1145/2382438.2382442


Bibliography

[Blo08] Joshua Bloch. Effective Java. 2nd Edition. Upper Saddle River, NJ:
Addison-Wesley, 2008. 346 pp. : 9780321356680 0321356683
0201310058 9780201310054.

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet
allocation”. In: J. Mach. Learn. Res. 3 (Mar. 1, 2003), pp. 993–1022.

[Bol+10] Dirk Bollen et al. “Understanding choice overload in recommender
systems”. In: Proceedings of the fourth ACM conference on Recommender
systems. RecSys ’10. ACM ID: 1864724. New York, NY, USA: ACM, 2010,
pp. 63–70. : 978-1-60558-906-0. : 10.1145/1864708.1864724.

[BS97] Marko Balabanović and Yoav Shoham. “Fab: content-based, collaborative
recommendation”. In: Commun. ACM 40.3 (1997), pp. 66–72. :
10.1145/245108.245124.

[Bur02] Robin Burke. “Hybrid Recommender Systems: Survey and Experiments”.
In: User Modeling and User-Adapted Interaction 12.4 (Nov. 2002),
pp. 331–370. : 0924-1868. : 10.1023/A:1021240730564.

[Bur10] Robin Burke. “Evaluating the dynamic properties of recommendation
algorithms”. In: ACM RecSys ’10. ACM, 2010, pp. 225–228. :
978-1-60558-906-0. : 10.1145/1864708.1864753.

[Can02] John Canny. “Collaborative filtering with privacy via factor analysis”. In:
ACM SIGIR ’02. ACM, 2002, pp. 238–245. : 1-58113-561-0. :
10.1145/564376.564419.

[CG98] Jaime Carbonell and Jade Goldstein. “The Use of MMR, Diversity-based
Reranking for Reordering Documents and Producing Summaries”. In:
Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’98. New York,
NY, USA: ACM, 1998, pp. 335–336. : 1-58113-015-5. :
10.1145/290941.291025.

[CG99] Y. H Chien and E. I George. “A bayesian model for collaborative filtering”.
In: 7th International Workshop on Artificial Intelligence and Statistics.
1999.

[CH08] Òscar Celma and Perfecto Herrera. “A New Approach to Evaluating Novel
Recommendations”. In: Proceedings of the 2008 ACM Conference on
Recommender Systems. RecSys ’08. New York, NY, USA: ACM, 2008,
pp. 179–186. : 978-1-60558-093-7. : 10.1145/1454008.1454038.

[Che+12] Tianqi Chen et al. “SVDFeature: A Toolkit for Feature-based Collaborative
Filtering”. In: J. Mach. Learn. Res. 13.1 (Dec. 2012), pp. 3619–3622. :
1532-4435.

207

http://dx.doi.org/10.1145/1864708.1864724
http://dx.doi.org/10.1145/245108.245124
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1145/1864708.1864753
http://dx.doi.org/10.1145/564376.564419
http://dx.doi.org/10.1145/290941.291025
http://dx.doi.org/10.1145/1454008.1454038


Bibliography

[CI05] Shigeru Chiba and Rei Ishikawa. “Aspect-Oriented Programming Beyond
Dependency Injection”. In: ECOOP 2005 - Object-Oriented Programming.
Vol. 3586. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 121–143. : 978-3-540-27992-1, 978-3-540-31725-8.

[Cla+08] Charles L.A. Clarke et al. “Novelty and Diversity in Information Retrieval
Evaluation”. In: Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR
’08. New York, NY, USA: ACM, 2008, pp. 659–666. :
978-1-60558-164-4. : 10.1145/1390334.1390446.

[Dee+90] Scott Deerwester et al. “Indexing by Latent Semantic Analysis”. In: Journal
of the American Society for Information Science 41.6 (1990), pp. 391–407.
: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.

[DK04] Mukund Deshpande and George Karypis. “Item-based top-N
recommendation algorithms”. In: ACM Transactions on Information
Systems 22.1 (2004), pp. 143–177. : 10.1145/963770.963776.

[Don+09] David L. Donoho et al. “Reproducible Research in Computational
Harmonic Analysis”. In: Computing in Science & Engineering 11.1 (Jan. 1,
2009), pp. 8–18. : 1521-9615. : 10.1109/MCSE.2009.15.

[Dow+14] M. Dowle et al. data.table: Extension of data.frame. Version 1.9.2. Feb. 27,
2014.

[Eks+10] Michael Ekstrand et al. “Automatically building research reading lists”. In:
RecSys ’10. ACM, 2010, pp. 159–166. : 10.1145/1864708.1864740.

[Eks+11] Michael Ekstrand et al. “Rethinking the recommender research ecosystem:
reproducibility, openness, and LensKit”. In: RecSys ’11. ACM, 2011,
pp. 133–140. : 978-1-4503-0683-6. : 10.1145/2043932.2043958.

[Eks+14] Michael D. Ekstrand et al. “User Perception of Differences in Recommender
Algorithms”. In: Proceedings of the 8th ACM Conference on Recommender
Systems (RecSys ’14). ACM, Oct. 2014.

[Eks14] Michael D. Ekstrand. “Building Open-Source Tools for Reproducible
Research and Education”. In: Proceedings of the Workshop on Sharing,
Re-use and Circulation of Resources in Cooperative Scientific Work at ACM
CSCW ’14. Feb. 2014.

[ER12] Michael Ekstrand and John Riedl. “When recommenders fail: predicting
recommender failure for algorithm selection and combination”. In:
Proceedings of the sixth ACM conference on Recommender systems. RecSys
’12. New York, NY, USA: ACM, 2012, pp. 233–236. :
978-1-4503-1270-7. : 10.1145/2365952.2366002.

208

http://dx.doi.org/10.1145/1390334.1390446
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/10.1145/963770.963776
http://dx.doi.org/10.1109/MCSE.2009.15
http://dx.doi.org/10.1145/1864708.1864740
http://dx.doi.org/10.1145/2043932.2043958
http://dx.doi.org/10.1145/2365952.2366002


Bibliography

[ERK10] Michael Ekstrand, John Riedl, and Joseph A. Konstan. “Collaborative
Filtering Recommender Systems”. In: Foundations and Trends® in
Human-Computer Interaction 4.2 (2010), pp. 81–173. : 1551-3955.
: 10.1561/1100000009.

[Fow04] Martin Fowler. Inversion of Control Containers and the Dependency
Injection pattern. Jan. 23, 2004. :
http://martinfowler.com/articles/injection.html (visited on 08/01/2011).

[Fun06] Simon Funk. Netflix Update: Try This at Home. The Evolution of
Cybernetics. Dec. 11, 2006. :
http://sifter.org/~simon/journal/20061211.html (visited on 04/08/2010).

[Gam+95a] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, 1995. 395 pp.

[Gam+95b] Erich Gamma et al. “Strategy”. In: Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley, 1995,
pp. 315–323. : 0201633612.

[Gan+11] Zeno Gantner et al. “MyMediaLite: A Free Recommender System Library”.
In: Proceedings of the Fifth ACM Conference on Recommender Systems.
RecSys ’11. New York, NY, USA: ACM, 2011, pp. 305–308. :
978-1-4503-0683-6. : 10.1145/2043932.2043989.

[GDJ10] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. “Beyond
Accuracy: Evaluating Recommender Systems by Coverage and
Serendipity”. In: Proceedings of the Fourth ACM Conference on
Recommender Systems. RecSys ’10. New York, NY, USA: ACM, 2010,
pp. 257–260. : 978-1-60558-906-0. : 10.1145/1864708.1864761.

[GL04] Robert Gentleman and Duncan Temple Lang. “Statistical Analyses and
Reproducible Research”. In: Bioconductor Project Working Papers
(May 29, 2004).

[Gof64] William Goffman. “A searching procedure for information retrieval”. In:
Information Storage and Retrieval 2.2 (July 1964), pp. 73–78. :
0020-0271. : 10.1016/0020-0271(64)90006-3.

[Gol+01] Ken Goldberg et al. “Eigentaste: A Constant Time Collaborative Filtering
Algorithm”. In: Information Retrieval 4.2 (July 1, 2001), pp. 133–151. :
10.1023/A:1011419012209.

[GS09] Asela Gunawardana and Guy Shani. “A Survey of Accuracy Evaluation
Metrics of Recommendation Tasks”. In: J. Mach. Learn. Res. 10 (2009),
pp. 2935–2962.

209

http://dx.doi.org/10.1561/1100000009
http://martinfowler.com/articles/injection.html
http://sifter.org/~simon/journal/20061211.html
http://dx.doi.org/10.1145/2043932.2043989
http://dx.doi.org/10.1145/1864708.1864761
http://dx.doi.org/10.1016/0020-0271(64)90006-3
http://dx.doi.org/10.1023/A:1011419012209


Bibliography

[Hal+09] Mark Hall et al. “The WEKA Data Mining Software: An Update”. In:
SIGKDD Explorations 11.1 (2009).

[Her+04] Jonathan Herlocker et al. “Evaluating collaborative filtering recommender
systems”. In: ACM Trans. Inf. Syst. 22.1 (2004), pp. 5–53. :
10.1145/963770.963772.

[Her+99] Jonathan Herlocker et al. “An algorithmic framework for performing
collaborative filtering”. In: Proceedings of the 22nd annual international
ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’99. ACM, 1999, pp. 230–237. :
10.1145/312624.312682.

[Hil+95] William Hill et al. “Recommending and evaluating choices in a virtual
community of use”. In: Proceedings of the SIGCHI conference on Human
factors in computing systems. Denver, Colorado, United States: ACM
Press/Addison-Wesley Publishing Co., 1995, pp. 194–201. :
0-201-84705-1. : 10.1145/223904.223929.

[HKR02] Jonathan Herlocker, Joseph A. Konstan, and John Riedl. “An Empirical
Analysis of Design Choices in Neighborhood-Based Collaborative Filtering
Algorithms”. In: Inf. Retr. 5.4 (2002), pp. 287–310. :
10.1023/A:1020443909834.

[Hof04] Thomas Hofmann. “Latent semantic models for collaborative filtering”. In:
ACM Transactions on Information Systems 22.1 (2004), pp. 89–115. :
10.1145/963770.963774.

[Hor99] Eric Horvitz. “Principles of mixed-initiative user interfaces”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems - CHI’99. Pittsburgh, Pennsylvania, United States: ACM, 1999,
pp. 159–166. : 0-201-48559-1. : 10.1145/302979.303030.

[HZ10] Christopher K. Hsee and Jiao Zhang. “General Evaluability Theory”. In:
Perspectives on Psychological Science 5.4 (July 1, 2010), pp. 343–355.
: 1745-6916, 1745-6924. : 10.1177/1745691610374586.

[JK02] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated gain-based evaluation
of IR techniques”. In: ACM Trans. Inf. Syst. (TOIS) 20.4 (Oct. 2002),
pp. 422–446. : 1046-8188. : 10.1145/582415.582418.

[JL09] Rob Johnson and Bob Lee. JSR 330: Dependency Injection for Java. 330.
Java Community Process, Oct. 13, 2009.

[JZM04] Xin Jin, Yanzan Zhou, and Bamshad Mobasher. “Web usage mining based
on probabilistic latent semantic analysis”. In: ACM KDD ’04. ACM, 2004,
pp. 197–205. : 1-58113-888-1. : 10.1145/1014052.1014076.

210

http://dx.doi.org/10.1145/963770.963772
http://dx.doi.org/10.1145/312624.312682
http://dx.doi.org/10.1145/223904.223929
http://dx.doi.org/10.1023/A:1020443909834
http://dx.doi.org/10.1145/963770.963774
http://dx.doi.org/10.1145/302979.303030
http://dx.doi.org/10.1177/1745691610374586
http://dx.doi.org/10.1145/582415.582418
http://dx.doi.org/10.1145/1014052.1014076


Bibliography

[KA13] Joseph A. Konstan and Gediminas Adomavicius. “Toward Identification and
Adoption of Best Practices in Algorithmic Recommender Systems
Research”. In: Proceedings of the International Workshop on
Reproducibility and Replication in Recommender Systems Evaluation.
RepSys ’13. New York, NY, USA: ACM, 2013, pp. 23–28. :
978-1-4503-2465-6. : 10.1145/2532508.2532513.

[Kli98] Rex B. Kline. Principles and practice of structural equation modeling. New
York: Guilford Press, 1998. 354 pp. : 1572303360.

[Klu+12] Daniel Kluver et al. “How many bits per rating?” In: Proceedings of the
sixth ACM conference on Recommender systems. RecSys ’12. New York,
NY, USA: ACM, 2012, pp. 99–106. : 978-1-4503-1270-7. :
10.1145/2365952.2365974.

[Kni+12] Bart Knijnenburg et al. “Explaining the user experience of recommender
systems”. In: User Modeling and User-Adapted Interaction 22.4 (Oct. 1,
2012), pp. 441–504. : 0924-1868, 1573-1391. :
10.1007/s11257-011-9118-4.

[Koh12] Nate Kohari. Ninject. 2012.
[Kon+14] Joseph A. Konstan et al. “Teaching Recommender Systems at Large Scale:

Evaluation and Lessons Learned from a Hybrid MOOC”. In: Proceedings of
the First ACM Conference on Learning @ Scale Conference. L@S ’14. New
York, NY, USA: ACM, 2014, pp. 61–70. : 978-1-4503-2669-8. :
10.1145/2556325.2566244.

[KS11] Yehuda Koren and Joe Sill. “OrdRec: an ordinal model for predicting
personalized item rating distributions”. In: Proceedings of the fifth ACM
conference on Recommender systems. RecSys ’11. New York, NY, USA:
ACM, 2011, pp. 117–124. : 978-1-4503-0683-6. :
10.1145/2043932.2043956.

[Lai+07] Christine Laine et al. “Reproducible Research: Moving toward Research the
Public Can Really Trust”. In: Annals of Internal Medicine 146.6 (Mar. 20,
2007), pp. 450–453. : 0003-4819. :
10.7326/0003-4819-146-6-200703200-00154.

[LHC09] Neal Lathia, Stephen Hailes, and Licia Capra. “Evaluating Collaborative
Filtering Over Time”. In: SIGIR ’09 Workshop on the Future of IR
Evaluation. July 2009.

[Liu07] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. In: Foundations
and Trends® in Information Retrieval 3.3 (2007), pp. 225–331. :
1554-0669, 1554-0677. : 10.1561/1500000016.

211

http://dx.doi.org/10.1145/2532508.2532513
http://dx.doi.org/10.1145/2365952.2365974
http://dx.doi.org/10.1007/s11257-011-9118-4
http://dx.doi.org/10.1145/2556325.2566244
http://dx.doi.org/10.1145/2043932.2043956
http://dx.doi.org/10.7326/0003-4819-146-6-200703200-00154
http://dx.doi.org/10.1561/1500000016


Bibliography

[LM05] Daniel Lemire and Anna Maclachlan. “Slope One Predictors for Online
Rating-Based Collaborative Filtering”. In: Proceedings of SIAM Data
Mining (SDM’05). 2005.

[Lou03] R. Lougee-Heimer. “The Common Optimization INterface for Operations
Research: Promoting open-source software in the operations research
community”. In: IBM Journal of Research and Development 47.1 (Jan.
2003), pp. 57–66. : 0018-8646. : 10.1147/rd.471.0057.

[LR04] Shyong K. Lam and John Riedl. “Shilling Recommender Systems for Fun
and Profit”. In: Proceedings of the 13th International Conference on World
Wide Web. WWW ’04. New York, NY, USA: ACM, 2004, pp. 393–402.
: 1-58113-844-X. : 10.1145/988672.988726.

[LSY03] G. Linden, B. Smith, and J. York. “Amazon.com recommendations:
item-to-item collaborative filtering”. In: IEEE Internet Computing 7.1
(2003), pp. 76–80. : 1089-7801.

[Mag+95] Jeff Magee et al. “Specifying distributed software architectures”. In:
Software Engineering — ESEC ’95. Ed. by Wilhelm Schäfer and
Pere Botella. Lecture Notes in Computer Science 989. Springer Berlin
Heidelberg, Jan. 1, 1995, pp. 137–153. : 978-3-540-60406-8,
978-3-540-45552-3.

[Mar96] Robert C. Martin. “The Dependency Inversion Principle”. In: C++ Report
8.6 (May 1996).

[Mcn+02] Sean Mcnee et al. “On the recommending of citations for research papers”.
In: CSCW ’02: Proceedings of the 2002 ACM conference on Computer
supported cooperative work. ACM, 2002, pp. 116–125. :
10.1145/587078.587096.

[MKK06] Sean McNee, Nishikant Kapoor, and Joseph A. Konstan. “Don’t Look
Stupid: Avoiding Pitfalls When Recommending Research Papers”. In:
Proceedings of the 2006 20th anniversary conference on Computer
Supported Cooperative Work. CSCW ’06. Banff, Alberta, Canada: ACM,
2006, p. 171. : 10.1145/1180875.1180903.

[MR00] Raymond J. Mooney and Loriene Roy. “Content-based book recommending
using learning for text categorization”. In: Proceedings of the fifth ACM
conference on Digital libraries. San Antonio, Texas, United States: ACM,
2000, pp. 195–204. : 1-58113-231-X. : 10.1145/336597.336662.

212

http://dx.doi.org/10.1147/rd.471.0057
http://dx.doi.org/10.1145/988672.988726
http://dx.doi.org/10.1145/587078.587096
http://dx.doi.org/10.1145/1180875.1180903
http://dx.doi.org/10.1145/336597.336662


Bibliography

[MRK06a] Sean McNee, John Riedl, and Joseph A. Konstan. “Being accurate is not
enough: how accuracy metrics have hurt recommender systems”. In: CHI
’06 extended abstracts on Human factors in computing systems. Montréal,
Québec, Canada: ACM, 2006, pp. 1097–1101. : 1-59593-298-4. :
10.1145/1125451.1125659.

[MRK06b] Sean McNee, John Riedl, and Joseph A. Konstan. “Making
recommendations better: an analytic model for human-recommender
interaction”. In: CHI ’06 Extended Abstracts. ACM, 2006, pp. 1103–1108.
: 1-59593-298-4. : 10.1145/1125451.1125660.

[MZ09] Benjamin M. Marlin and Richard S. Zemel. “Collaborative prediction and
ranking with non-random missing data”. In: ACM RecSys ’09. ACM, 2009,
pp. 5–12. : 978-1-60558-435-5. : 10.1145/1639714.1639717.

[Ngu+13] Tien T. Nguyen et al. “Rating Support Interfaces to Improve User
Experience and Recommender Accuracy”. In: Proceedings of the 7th ACM
Conference on Recommender Systems. RecSys ’13. New York, NY, USA:
ACM, 2013, pp. 149–156. : 978-1-4503-2409-0. :
10.1145/2507157.2507188.

[Pas+10] Erick B. Passos et al. “Smart composition of game objects using
dependency injection”. In: Comput. Entertain. 7.4 (Jan. 2010), 53:1–53:15.
: 1544-3574. : 10.1145/1658866.1658872.

[Pat07] Arkadiusz Paterek. “Improving regularized singular value decomposition
for collaborative filtering”. In: KDD Cup and Workshop 2007. Aug. 2007.

[PDZ06] Roger D. Peng, Francesca Dominici, and Scott L. Zeger. “Reproducible
Epidemiologic Research”. In: American Journal of Epidemiology 163.9
(May 1, 2006), pp. 783–789. : 0002-9262, 1476-6256. :
10.1093/aje/kwj093.

[Pen+00] David Pennock et al. “Collaborative Filtering by Personality Diagnosis: A
Hybrid Memory- and Model-Based Approach”. In: In Proceedings of the
Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI-2000).
Morgan Kaufmann, 2000, pp. 473–480.

[Pen11] Roger D. Peng. “Reproducible Research in Computational Science”. In:
Science (New York, N.y.) 334.6060 (Dec. 2, 2011), pp. 1226–1227. :
0036-8075. : 10.1126/science.1213847.

[R C14] R Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing, 2014.

[Res+94] Paul Resnick et al. “GroupLens: an open architecture for collaborative
filtering of netnews”. In: ACM CSCW ’94. ACM, 1994, pp. 175–186. :
0-89791-689-1. : 10.1145/192844.192905.

213

http://dx.doi.org/10.1145/1125451.1125659
http://dx.doi.org/10.1145/1125451.1125660
http://dx.doi.org/10.1145/1639714.1639717
http://dx.doi.org/10.1145/2507157.2507188
http://dx.doi.org/10.1145/1658866.1658872
http://dx.doi.org/10.1093/aje/kwj093
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1145/192844.192905


Bibliography

[Ric+10] Francesco Ricci et al., eds. Recommender Systems Handbook. Springer,
2010.

[Ric79] Elaine Rich. “User modeling via stereotypes”. In: Cognitive Science 3.4
(Oct. 1979), pp. 329–354. : 0364-0213.

[Rij79] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 1979.
: 0408709294.

[RJ07] Ekaterina Razina and David Janzen. “Effects of Dependency Injection on
Maintainability”. In: Proceedings of the 11th IASTED International
Conference on Software Engineering and Applications: Cambridge, MA
(Nov. 19, 2007), pp. 7–12.

[Ros12] Yves Rosseel. “lavaan: An R Package for Structural Equation Modeling”. In:
Journal of Statistical Software 48.2 (2012), pp. 1–36. : 1548-7660.

[Sal92] Gerard Salton. “The state of retrieval system evaluation”. In: Information
Processing & Management 28.4 (July 1992), pp. 441–449. : 0306-4573.
: 10.1016/0306-4573(92)90002-H.

[SAM13] Mohamed Sarwat, James Avery, and Mohamed F. Mokbel. “RecDB in
Action: Recommendation Made Easy in Relational Databases”. In: Proc.
VLDB Endow. 6.12 (Aug. 2013), pp. 1242–1245. : 2150-8097. :
10.14778/2536274.2536286.

[Sar+01] Badrul Sarwar et al. “Item-based collaborative filtering recommendation
algorithms”. In: ACM WWW ’01. ACM, 2001, pp. 285–295. :
1-58113-348-0. : 10.1145/371920.372071.

[Sar+02] B. M. Sarwar et al. “Incremental SVD-Based Algorithms for Highly
Scaleable Recommender Systems”. In: ICCIT 2002. ICCIT. 2002.

[SB10] Hanhuai Shan and Arindam Banerjee. “Generalized Probabilistic Matrix
Factorizations for Collaborative Filtering”. In: Data Mining, IEEE
International Conference on. Los Alamitos, CA, USA: IEEE Computer
Society, 2010, pp. 1025–1030. :
http://doi.ieeecomputersociety.org/10.1109/ICDM.2010.116.

[SBM12] Sebastian Schelter, Christoph Boden, and Volker Markl. “Scalable
Similarity-based Neighborhood Methods with MapReduce”. In:
Proceedings of the Sixth ACM Conference on Recommender Systems.
RecSys ’12. New York, NY, USA: ACM, 2012, pp. 163–170. :
978-1-4503-1270-7. : 10.1145/2365952.2365984.

214

http://dx.doi.org/10.1016/0306-4573(92)90002-H
http://dx.doi.org/10.14778/2536274.2536286
http://dx.doi.org/10.1145/371920.372071
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICDM.2010.116
http://dx.doi.org/10.1145/2365952.2365984


Bibliography

[Sch+13] Sebastian Schelter et al. “Distributed Matrix Factorization with Mapreduce
Using a Series of Broadcast-joins”. In: Proceedings of the 7th ACM
Conference on Recommender Systems. RecSys ’13. New York, NY, USA:
ACM, 2013, pp. 281–284. : 978-1-4503-2409-0. :
10.1145/2507157.2507195.

[SHB05] Guy Shani, David Heckerman, and Ronen I. Brafman. “An MDP-based
recommender system”. In: Journal of Machine Learning Research 6 (2005),
pp. 1265–1295. : 1533-7928.

[Sil+09] Joseph Sill et al. “Feature-Weighted Linear Stacking”. In: arXiv:0911.0460
(Nov. 3, 2009).

[Sin+13] Tobias Sing et al. ROCR: Visualizing the performance of scoring classifiers.
Version 1.0-5. May 16, 2013.

[SKR01] J. Ben Schafer, Joseph A. Konstan, and John Riedl. “E-Commerce
Recommendation Applications”. In: Data Mining and Knowledge Discovery
5.1 (Jan. 1, 2001), pp. 115–153. : 10.1023/A:1009804230409.

[SM08] Ruslan Salakhutdinov and Andriy Mnih. “Probabilistic Matrix
Factorization”. In: Advances in Neural Information Processing Systems.
Vol. 20. Cambridge, MA: MIT Press, 2008, pp. 1257–1264.

[SM95] Upendra Shardanand and Pattie Maes. “Social information filtering:
algorithms for automating “word of mouth””. In: Proceedings of the
SIGCHI conference on Human factors in computing systems. Denver,
Colorado, United States: ACM Press/Addison-Wesley Publishing Co., 1995,
pp. 210–217. : 0-201-84705-1. : 10.1145/223904.223931.

[SMH07] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. “Restricted
Boltzmann machines for collaborative filtering”. In: ACM ICML ’07. ACM,
2007, pp. 791–798. : 978-1-59593-793-3. :
10.1145/1273496.1273596.

[SVR09] Shilad Sen, Jesse Vig, and John Riedl. “Tagommenders: connecting users to
items through tags”. In: Proceedings of the 18th international conference on
World wide web. Madrid, Spain: ACM, 2009, pp. 671–680. :
978-1-60558-487-4. : 10.1145/1526709.1526800.

[Swe63] John A. Swets. “Information Retrieval Systems”. In: Science 141.3577
(July 19, 1963), pp. 245–250. : 00368075.

[Tan11] O. Tange. “GNU Parallel — The Command-Line Power Tool”. In: ;login:
The USENIX Magazine 36.1 (Feb. 2011), pp. 42–47.

215

http://dx.doi.org/10.1145/2507157.2507195
http://dx.doi.org/10.1023/A:1009804230409
http://dx.doi.org/10.1145/223904.223931
http://dx.doi.org/10.1145/1273496.1273596
http://dx.doi.org/10.1145/1526709.1526800


Bibliography

[Tor+04] Roberto Torres et al. “Enhancing digital libraries with TechLens+”. In:
Proceedings of the 4th ACM/IEEE-CS joint conference on Digital libraries.
Tuscon, AZ, USA: ACM, 2004, pp. 228–236. : 1-58113-832-6. :
10.1145/996350.996402.

[VC11] Saúl Vargas and Pablo Castells. “Rank and Relevance in Novelty and
Diversity Metrics for Recommender Systems”. In: Proceedings of the Fifth
ACM Conference on Recommender Systems. RecSys ’11. New York, NY,
USA: ACM, 2011, pp. 109–116. : 978-1-4503-0683-6. :
10.1145/2043932.2043955.

[VKV09] P. Vandewalle, J. Kovacevic, and M. Vetterli. “Reproducible research in
signal processing”. In: IEEE Signal Processing Magazine 26.3 (May 2009),
pp. 37–47. : 1053-5888. : 10.1109/MSP.2009.932122.

[VSR12] Jesse Vig, Shilad Sen, and John Riedl. “The Tag Genome: Encoding
Community Knowledge to Support Novel Interaction”. In: ACM Trans.
Interact. Intell. Syst. 2.3 (Sept. 2012), 13:1–13:44. : 2160-6455. :
10.1145/2362394.2362395.

[WC14] Hadley Wickham and Winston Chang. ggplot2: An implementation of the
Grammar of Graphics. Version 1.0.0. May 21, 2014.

[WF14] Hadley Wickham and Romain Francois. dplyr: dplyr: a grammar of data
manipulation. Version 0.2. May 21, 2014.

[WGK14] Martijn C. Willemsen, Mark P. Graus, and Bart P. Knijnenburg.
“Understanding the Role of Latent Feature Diversification on Choice
Difficulty and Satisfaction”. In: Under review. (2014).

[Wic14a] Hadley Wickham. plyr: Tools for splitting, applying and combining data.
Version 1.8.1. Feb. 26, 2014.

[Wic14b] Hadley Wickham. reshape2: Flexibly reshape data: a reboot of the reshape
package. Version 1.4. Apr. 23, 2014.

[YL99] Yiming Yang and Xin Liu. “A re-examination of text categorization
methods”. In: ACM SIGIR ’99. ACM, 1999, pp. 42–49. :
1-58113-096-1. : 10.1145/312624.312647.

[YTM08] Hong Yul Yang, E. Tempero, and H. Melton. “An Empirical Study into Use
of Dependency Injection in Java”. In: 19th Australian Conference on
Software Engineering, 2008. ASWEC 2008. 19th Australian Conference on
Software Engineering, 2008. ASWEC 2008. IEEE, Mar. 26, 2008,
pp. 239–247. : 978-0-7695-3100-7. : 10.1109/ASWEC.2008.4483212.

216

http://dx.doi.org/10.1145/996350.996402
http://dx.doi.org/10.1145/2043932.2043955
http://dx.doi.org/10.1109/MSP.2009.932122
http://dx.doi.org/10.1145/2362394.2362395
http://dx.doi.org/10.1145/312624.312647
http://dx.doi.org/10.1109/ASWEC.2008.4483212


Bibliography

[ZH08] Mi Zhang and Neil Hurley. “Avoiding Monotony: Improving the Diversity
of Recommendation Lists”. In: Proceedings of the 2008 ACM Conference
on Recommender Systems. RecSys ’08. New York, NY, USA: ACM, 2008,
pp. 123–130. : 978-1-60558-093-7. : 10.1145/1454008.1454030.

[Zho+10] Tao Zhou et al. “Solving the apparent diversity-accuracy dilemma of
recommender systems”. In: Proceedings of the National Academy of
Sciences 107.10 (Mar. 9, 2010), pp. 4511–4515. : 0027-8424,
1091-6490. : 10.1073/pnas.1000488107.

[Zie+05] Cai-Nicolas Ziegler et al. “Improving recommendation lists through topic
diversification”. In: Proceedings of the 14th international conference on
World Wide Web. Chiba, Japan: ACM, 2005, pp. 22–32. :
1-59593-046-9. : 10.1145/1060745.1060754.

[ZZ06] Philip Zigoris and Yi Zhang. “Bayesian adaptive user profiling with explicit
& implicit feedback”. In: ACM CIKM ’06. ACM, 2006, pp. 397–404. :
1-59593-433-2.

217

http://dx.doi.org/10.1145/1454008.1454030
http://dx.doi.org/10.1073/pnas.1000488107
http://dx.doi.org/10.1145/1060745.1060754


Appendix A

LensKit Manual Pages

These are the manual pages for the LensKit command line tools.

A.1 lenskit
Name
lenskit - a command-line tool for LensKit

Synopsis
lenskit [OPTIONS] subcommand [arguments]

Description
The LensKit command line tool provides several capabilities for examining, evaluating,
and using LensKit recommender algorithms. It primarily operates on LensKit algorithm
configurations and eval scripts written in the corresponding Groovy DSLs.

The various specific tools are exposed via subcommands, much like git(1) and similar
tools. The subcommands are listed below (see Subcommands), and each is described in
more detail in its own manual page.

Options
--help Print usage instructions.

--log-file FILE Write logging output to FILE.

-d, --debug Increase verbosity, printing debug messages to the console. By default, only
messages at INFO and higher levels are logged. The log file, if specified, always
receives debug-level output.

--debug-grapht Output INFO (or DEBUG, if --debug is also used) logging messages from
Grapht. Grapht is pretty noisy, so by default its output is filtered to warnigns and
errors. If you need to debug a problem that is occurring in Grapht, use this option.
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A.2. lenskit-version

Subcommands
Each command is documented in its own man page, lenskit-command(1).

version Print the LensKit version.

train-model Train a recommender model and save it to disk.

predict Predict user ratings for items, using a configuration or a trained model.

recommend Recommend items for users, using a configuration or a trained model.

graph Output a GraphViz diagram of a recommender configuration (either from configu-
ration files or a trained model).

eval Run a LensKit evaluation script.

pack-ratings Pack rating data into a binary file for more efficient access.

Environment and System Properties
The LensKit CLI (or its launcher script) recognize the following environment variables:

JAVA_OPTS Additional flags to pass to the JVM (such as -Xmx4g to set the memory limit).

JAVA_HOME Where to find the Java Runtime Environment.

Also, the following Java system properties can be set for useful effects:

logback.configurationFile The location of a Logback configuration file. This overrides
all built-in or command line logging configuration.

See Also
• Man pages for subcommands: lenskit-version(1), lenskit-train-model(1), lenskit-

predict(1), lenskit-recommend(1), lenskit-graph(1), lenskit-eval(1), lenskit-pack-
ratings(1)

• The LensKit home page
• The LensKit manual

A.2 lenskit-version
Name
lenskit version - print LensKit version info.
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A.3. lenskit-train-model

Synopsis
lenskit [GLOBAL OPTIONS] version

Description
The version command prints the current version of LensKit and exits.

This subcommand takes no arguments.

See Also
lenskit(1)

A.3 lenskit-train-model
Name
lenskit train-model - train a LensKit model and serialize it to disk.

Synopsis
lenskit [GLOBAL OPTIONS] train-model [OPTIONS] CONFIG...

Description
The train-model command loads a LensKit algorithm configuration, instantiates its share-
able components, and writes the resulting recommender engine to a file. This file can then
be loaded into an application or one of the other LensKit commands to provide recommen-
dations and predictions.

Options
CONFIG A LensKit algorithm configuration file, written in the LensKit algorithm DSL

for Groovy. If multiple configuration files are specified, they are used together, with
configuration in later files taking precedence over earlier files.

--help Show usage help.

-o FILE, --output-file FILE Write the resulting recommender model to FILE. If this op-
tion is not specified, the model will be written to model.bin in the current directory.
If FILE ends in .gz, the file will be gzip-compressed. Compressed model files can be
transparently read by LensKit, so this is usually a good idea.
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A.4. lenskit-predict

Input Data Options

This command can read data in several different ways. To give the model building process
some data to work with, one of the following mutually-exclusive options must be present:

--ratings-file FILE Read ratings from the delimited text file FILE.

--csv-file FILE Read ratings from the CSV file FILE. This is identical to passing --ratings-file=FILE

with --delimiter=,.

--tsv-file FILE Read ratings from the tab-separated file FILE. This is identical to passing
--ratings-file=FILE with --delimiter=ˆI, but doesn’t require you to know how to
encode tab characters in your shell.

--pack-file FILE Read ratings from the packed rating file FILE. Packed files can be created
with the pack-ratings command.

Additionally, the following options provide additional control over the data input:

-d DELIM, --delimiter DELIM Use DELIM as the delimiter for delimited text files. Only
effective in conjunction with --ratings-file.

Script Environment Options

This command takes the standard LensKit script environment options:

-C URL, --classpath URL Add URL (which can be a path to a local directory or JAR file)
to the classpath for loading the configuration scripts. This URL can contain additional
components for the recommenders. This option can be specified multiple times to add
multiple locations to the classpath.

-D PROP=VALUE, --define PROP=VALUE Define the property PROP to equal VALUE.
This option is currently ignored for this command. To set Java system properties, use
the JAVA_OPTS environment variable (see lenskit(1)).

See Also
lenskit(1)

A.4 lenskit-predict
Name
lenskit predict - predict user ratings of items.

221

lenskit-pack-ratings.1.html
lenskit.1.html
./lenskit.1.html


A.4. lenskit-predict

Synopsis
lenskit [GLOBAL OPTIONS] predict [OPTIONS] USER ITEM...

Description
The predict command predicts a user’s ratings for some items. It loads a recommender from
a trained model file and/or LensKit configuration scripts and uses the configured algorithm
to produce rating predictions.

Options
USER The user ID for whom to generate predictions.

ITEM An item ID to predict for.

--help Show usage help.

-m FILE, --model-file FILE Load a trained recommender engine from FILE.

-c SCRIPT, --config-file SCRIPT Configure the recommender using SCRIPT . This option
can be specified multiple times, and later configurations take precedence over earlier
ones. If --model-file is also specified, the scripts are used to modify the trained
model.

--print-channel CHAN In addition to rating predictions, also print the value in side chan-
nel CHAN.

Input Data Options

This command can read data in several different ways. To give the rating prediction process
some data to work with, one of the following mutually-exclusive options must be present:

--ratings-file FILE Read ratings from the delimited text file FILE.

--csv-file FILE Read ratings from the CSV file FILE. This is identical to passing --ratings-file=FILE

with --delimiter=,.

--tsv-file FILE Read ratings from the tab-separated file FILE. This is identical to passing
--ratings-file=FILE with --delimiter=ˆI, but doesn’t require you to know how to
encode tab characters in your shell.

--pack-file FILE Read ratings from the packed rating file FILE. Packed files can be created
with the pack-ratings command.

Additionally, the following options provide additional control over the data input:
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A.5. lenskit-recommend

-d DELIM, --delimiter DELIM Use DELIM as the delimiter for delimited text files. Only
effective in conjunction with --ratings-file.

Script Environment Options

This command takes the standard LensKit script environment options for controlling how
configuration scripts are interpreted:

-C URL, --classpath URL Add URL (which can be a path to a local directory or JAR file)
to the classpath for loading the configuration scripts. This URL can contain additional
components for the recommenders. This option can be specified multiple times to add
multiple locations to the classpath.

-D PROP=VALUE, --define PROP=VALUE Define the property PROP to equal VALUE.
This option is currently ignored for this command. To set Java system properties, use
the JAVA_OPTS environment variable (see lenskit(1)).

See Also
lenskit(1)

A.5 lenskit-recommend
Name
lenskit recommend - recommend items for users.

Synopsis
lenskit [GLOBAL OPTIONS] recommend [OPTIONS] USER...

Description
The recommend command recommends items for some users. It loads a recommender from
a trained model file and/or LensKit configuration scripts and uses the configured algorithm
to produce recommendations.

Options
USER A user to recommend for.

--help Show usage help.

-n N Produce N recommendations. The default is 10.
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A.5. lenskit-recommend

-m FILE, --model-file FILE Load a trained recommender engine from FILE.

-c SCRIPT, --config-file SCRIPT Configure the recommender using SCRIPT . This option
can be specified multiple times, and later configurations take precedence over earlier
ones. If --model-file is also specified, the scripts are used to modify the trained
model.

--print-channel CHAN In addition to item scores, also print the value in side channel
CHAN.

Input Data Options

This command can read data in several different ways. To give the recommendation process
some data to work with, one of the following mutually-exclusive options must be present:

--ratings-file FILE Read ratings from the delimited text file FILE.

--csv-file FILE Read ratings from the CSV file FILE. This is identical to passing --ratings-file=FILE

with --delimiter=,.

--tsv-file FILE Read ratings from the tab-separated file FILE. This is identical to passing
--ratings-file=FILE with --delimiter=ˆI, but doesn’t require you to know how to
encode tab characters in your shell.

--pack-file FILE Read ratings from the packed rating file FILE. Packed files can be created
with the pack-ratings command.

Additionally, the following options provide additional control over the data input:

-d DELIM, --delimiter DELIM Use DELIM as the delimiter for delimited text files. Only
effective in conjunction with --ratings-file.

Script Environment Options

This command takes the standard LensKit script environment options for controlling how
configuration scripts are interpreted:

-C URL, --classpath URL Add URL (which can be a path to a local directory or JAR file)
to the classpath for loading the configuration scripts. This URL can contain additional
components for the recommenders. This option can be specified multiple times to add
multiple locations to the classpath.

-D PROP=VALUE, --define PROP=VALUE Define the property PROP to equal VALUE.
This option is currently ignored for this command. To set Java system properties, use
the JAVA_OPTS environment variable (see lenskit(1)).
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A.6. lenskit-graph

See Also
lenskit(1)

A.6 lenskit-graph
Name
lenskit graph - produce a GraphViz diagram of a recommender configuration.

Synopsis
lenskit [GLOBAL OPTIONS] graph [OPTIONS] CONFIGS

Description
The graph command loads a LensKit algorithm configuration from one or more configu-
ration files and produces a visualization of the resulting object graph. This visualization
is in GraphViz DOT format, suitable for rendering with dot(1). Visualizing recommender
configurations is often ueful for debugging configurations and making sure they produce
the objects you expect.

Options
CONFIG A Groovy script containing a LensKit algorithm file in the LensKit configuration

DSL. If there are multiple configurations, the are passed in order to LenskitRecommenderEngineBuilder,
so later configurations override earlier ones.

--help Print usage help.

-o FILE, --output-file FILE Write the GraphViz file to FILE. The default output file is
recommender.dot.

--domain SPEC Use the preference domain SPEC as the preference domain in the con-
figuration. SPEC is of the form [LOW,HIGH]/PREC; the precision (and slash) can
be omitted for continuously valued ratings. As an example, ‘[0.5,5.0]/0.5’ will be a
domain from 0.5 to 5.0 stars with a granularity of 1/2 star.

--model-file FILE Load a pre-trained model from FILE. In this mode, the configurations
are applied as modifications to the model rather than used to build a graph from
scratch. The mdoel file can be compressed.
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A.7. lenskit-eval

Script Environment Options

This command takes the standard LensKit script environment options for controlling how
configuration scripts are interpreted:

-C URL, --classpath URL Add URL (which can be a path to a local directory or JAR file)
to the classpath for loading the configuration scripts. This URL can contain additional
components for the recommenders. This option can be specified multiple times to add
multiple locations to the classpath.

-D PROP=VALUE, --define PROP=VALUE Define the property PROP to equal VALUE.
This option is currently ignored for this command. To set Java system properties, use
the JAVA_OPTS environment variable (see lenskit(1)).

See Also
lenskit(1)

A.7 lenskit-eval
Name
lenskit eval - run an offline evaluation of recommender behavior and performance.

Synopsis
lenskit [GLOBAL OPTIONS] eval [OPTIONS] [TARGET ...]

Description
The eval command runs a LensKit evaluation script to measure the behavior and perfor-
mance (such as recommendation or prediction accuracy) of one or more recommender al-
gorithms.

Evaluation scripts are written in Groovy, using an embedded domain-specific language
for describing LensKit evaluations. This is documented more in the LensKit manual; there
is a link in See Also.

The lenskit eval subcommand serves the same purpose as the now-deprecated lenskit-
eval command, with slightly different invocation syntax. Use lenskit eval in new scripts
and experiments.
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A.8. lenskit-pack-ratings

Options
TARGET Run the target TARGET in the evaluation script. If no targets are specified on the

command line, the script is run (which is sufficient for scripts that do not use targets),
or the default target specified by the script is run.

--help Show usage help.

-f SCRIPT, --file SCRIPT Load evaluation script SCRIPT . The default is eval.groovy.

-j N, --thread-count N Use up to N threads for parallelizable portions of the evaluation.

-F, --force Force eval tasks to re-run, even if they detect that their outputs are up-to-date.
Not all tasks do up-to-date checking.

Script Environment Options

This command takes the standard LensKit script environment options for controlling how
configuration scripts are interpreted:

-C URL, --classpath URL Add URL (which can be a path to a local directory or JAR file)
to the classpath for loading the evaluation script. This URL can contain additional
components for the recommenders or evaluation. This option can be specified multi-
ple times to add multiple locations to the classpath.

-D PROP=VALUE, --define PROP=VALUE Define the property PROP to equal VALUE.
These properties are not Java system properties, but are available via the config object
in evaluation scripts. This object can be accessed as a hash in Groovy.

See Also
• lenskit(1)
• Using the LensKit Evaluator

A.8 lenskit-pack-ratings
Name
lenskit pack-ratings - pack rating data into a binary file for efficient access.

Synopsis
lenskit [GLOBAL OPTIONS] pack-ratings OPTIONS
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A.8. lenskit-pack-ratings

Description
The pack-ratings command packs rating data into a binary file that LensKit can efficiently
map into memory. These files make many recommender operations significantly faster and
less memory intensive, including model building and recommendation with certain algo-
rithms.

Options
--help Show usage help.

-o FILE, --output-file FILE Write the resulting recommender model to FILE. If not spec-
ified, the ratings will be packed into the file ratings.pack.

--no-timestamps Ignore timestamps in the input data and omit them from the packed rat-
ings.

Input Data Options

This command can read data in several different ways. One of the following mutually-
exclusive options must be present:

--ratings-file FILE Read ratings from the delimited text file FILE.

--csv-file FILE Read ratings from the CSV file FILE. This is identical to passing --ratings-file=FILE

with --delimiter=,.

--tsv-file FILE Read ratings from the tab-separated file FILE. This is identical to passing
--ratings-file=FILE with --delimiter=ˆI, but doesn’t require you to know how to
encode tab characters in your shell.

--pack-file FILE Read ratings from the packed rating file FILE. Packed files can be created
with the pack-ratings command.

Additionally, the following options provide additional control over the data input:

-d DELIM, --delimiter DELIM Use DELIM as the delimiter for delimited text files. Only
effective in conjunction with --ratings-file.

Known Issues
If you want timestamped data, the input data must be sorted by timestamp. LensKit will
eventually be able to sort data in the packing process, but cannot currently do so.

See Also
lenskit(1)
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Appendix B

List Comparison SEM Output

This appendix contains the Lavaan output for the CFA and SEM models in chapter 7.

> library(lavaan)

> # load the compiled models

> load("experiment/build/models.Rdata")

B.1 Confirmatory Factor Analysis
> cat(cfa.full$spec)

Acc =~ NA * AccAppealing + AccAtTop + AccBad + AccBest

Sat =~ NA * SatFind + SatMobile + SatRecommend + SatSat + SatValuable

Und =~ NA * UndPersonalized + UndTaste + UndTrust + UndMainstream

Div =~ NA * DivMoods + DivSimilar + DivTastes + DivVaried

Nov =~ NA * NovFamiliar + NovFewerNew + NovSurprising + NovUnexpected + NovUnthought

Acc ~~ 1*Acc

Div ~~ 1*Div

Nov ~~ 1*Nov

Sat ~~ 1*Sat

Und ~~ 1*Und

Acc ~ CondSVDUU + CondIIUU

Div ~ CondSVDUU + CondIIUU

Nov ~ CondSVDUU + CondIIUU

Sat ~ CondSVDUU + CondIIUU

Und ~ CondSVDUU + CondIIUU

> summary(cfa.full$model)

lavaan (0.5-16) converged normally after 85 iterations

Number of observations 582

Estimator DWLS Robust
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B.1. Confirmatory Factor Analysis

Minimum Function Test Statistic 1297.588 1508.457

Degrees of freedom 233 233

P-value (Chi-square) 0.000 0.000

Scaling correction factor 0.932

Shift parameter 116.428

for simple second-order correction (Mplus variant)

Parameter estimates:

Information Expected

Standard Errors Robust.sem

Estimate Std.err Z-value P(>|z|)

Latent variables:

Acc =~

AccAppealing 0.911 0.010 86.949 0.000

AccAtTop 0.572 0.027 21.074 0.000

AccBad -0.751 0.020 -38.429 0.000

AccBest 0.786 0.016 48.888 0.000

Sat =~

SatFind 0.923 0.007 125.266 0.000

SatMobile 0.921 0.008 112.673 0.000

SatRecommend 0.846 0.012 69.073 0.000

SatSat 0.928 0.007 129.929 0.000

SatValuable 0.884 0.010 91.959 0.000

Und =~

UndPersonalzd 0.842 0.012 68.642 0.000

UndTaste 0.933 0.007 138.226 0.000

UndTrust 0.943 0.007 144.785 0.000

UndMainstream -0.072 0.036 -2.010 0.044

Div =~

DivMoods 0.838 0.015 57.801 0.000

DivSimilar -0.772 0.019 -41.423 0.000

DivTastes 0.793 0.017 46.592 0.000

DivVaried 0.772 0.018 42.440 0.000

Nov =~

NovFamiliar -0.784 0.023 -34.118 0.000

NovFewerNew -0.258 0.037 -7.011 0.000

NovSurprising -0.454 0.038 -11.931 0.000

NovUnexpected 0.770 0.023 33.509 0.000
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B.1. Confirmatory Factor Analysis

NovUnthought 0.704 0.025 28.172 0.000

Regressions:

Acc ~

CondSVDUU -0.774 0.119 -6.502 0.000

CondIIUU -0.709 0.111 -6.417 0.000

Div ~

CondSVDUU 0.601 0.119 5.066 0.000

CondIIUU 0.295 0.111 2.664 0.008

Nov ~

CondSVDUU 0.961 0.120 7.998 0.000

CondIIUU 0.912 0.113 8.043 0.000

Sat ~

CondSVDUU -0.592 0.113 -5.249 0.000

CondIIUU -0.548 0.105 -5.232 0.000

Und ~

CondSVDUU -0.652 0.117 -5.577 0.000

CondIIUU -0.534 0.107 -4.997 0.000

Covariances:

Acc ~~

Sat 0.927 0.009 107.165 0.000

Und 0.989 0.008 127.071 0.000

Div -0.033 0.041 -0.801 0.423

Nov -0.775 0.022 -34.995 0.000

Sat ~~

Und 0.966 0.005 198.037 0.000

Div 0.125 0.038 3.278 0.001

Nov -0.626 0.027 -23.174 0.000

Und ~~

Div 0.090 0.039 2.332 0.020

Nov -0.676 0.026 -26.391 0.000

Div ~~

Nov 0.090 0.040 2.279 0.023

Intercepts:

Acc 0.000

Sat 0.000

Und 0.000

Div 0.000
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B.1. Confirmatory Factor Analysis

Nov 0.000

Thresholds:

AccAppelng|t1 -1.377 0.097 -14.225 0.000

AccAppelng|t2 -0.265 0.084 -3.148 0.002

AccAppelng|t3 0.303 0.085 3.584 0.000

AccAppelng|t4 1.450 0.117 12.370 0.000

AccAtTop|t1 -1.439 0.093 -15.412 0.000

AccAtTop|t2 -0.517 0.081 -6.361 0.000

AccAtTop|t3 0.415 0.081 5.122 0.000

AccAtTop|t4 1.316 0.100 13.100 0.000

AccBad|t1 -1.385 0.109 -12.674 0.000

AccBad|t2 -0.495 0.086 -5.752 0.000

AccBad|t3 0.567 0.087 6.548 0.000

AccBad|t4 1.589 0.100 15.846 0.000

AccBest|t1 -1.442 0.094 -15.338 0.000

AccBest|t2 -0.535 0.082 -6.532 0.000

AccBest|t3 0.671 0.083 8.045 0.000

AccBest|t4 1.603 0.117 13.645 0.000

SatFind|t1 -1.564 0.099 -15.863 0.000

SatFind|t2 -0.456 0.084 -5.446 0.000

SatFind|t3 0.515 0.084 6.094 0.000

SatFind|t4 1.659 0.125 13.243 0.000

SatMobile|t1 -1.606 0.105 -15.292 0.000

SatMobile|t2 -0.593 0.088 -6.707 0.000

SatMobile|t3 0.685 0.090 7.646 0.000

SatMobile|t4 1.715 0.131 13.089 0.000

SatRecmmnd|t1 -1.673 0.098 -17.092 0.000

SatRecmmnd|t2 -0.631 0.085 -7.447 0.000

SatRecmmnd|t3 0.731 0.086 8.481 0.000

SatRecmmnd|t4 1.832 0.138 13.244 0.000

SatSat|t1 -1.631 0.096 -16.943 0.000

SatSat|t2 -0.416 0.083 -5.039 0.000

SatSat|t3 0.611 0.085 7.215 0.000

SatSat|t4 1.726 0.130 13.307 0.000

SatValuabl|t1 -1.601 0.099 -16.130 0.000

SatValuabl|t2 -0.493 0.086 -5.746 0.000

SatValuabl|t3 0.501 0.086 5.824 0.000

SatValuabl|t4 1.578 0.116 13.596 0.000

UndPrsnlzd|t1 -1.604 0.102 -15.708 0.000
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B.1. Confirmatory Factor Analysis

UndPrsnlzd|t2 -0.446 0.085 -5.239 0.000

UndPrsnlzd|t3 0.475 0.085 5.564 0.000

UndPrsnlzd|t4 1.687 0.127 13.266 0.000

UndTaste|t1 -1.432 0.098 -14.614 0.000

UndTaste|t2 -0.337 0.085 -3.955 0.000

UndTaste|t3 0.576 0.088 6.565 0.000

UndTaste|t4 1.493 0.120 12.422 0.000

UndTrust|t1 -1.522 0.096 -15.891 0.000

UndTrust|t2 -0.356 0.083 -4.292 0.000

UndTrust|t3 0.562 0.085 6.620 0.000

UndTrust|t4 1.498 0.116 12.891 0.000

UndManstrm|t1 -1.563 0.103 -15.155 0.000

UndManstrm|t2 -0.588 0.082 -7.184 0.000

UndManstrm|t3 0.665 0.083 8.051 0.000

UndManstrm|t4 1.566 0.108 14.476 0.000

DivMoods|t1 -1.444 0.115 -12.508 0.000

DivMoods|t2 -0.266 0.087 -3.072 0.002

DivMoods|t3 0.732 0.091 8.080 0.000

DivMoods|t4 1.818 0.119 15.322 0.000

DivSimilar|t1 -1.596 0.108 -14.765 0.000

DivSimilar|t2 -0.673 0.085 -7.931 0.000

DivSimilar|t3 0.245 0.083 2.968 0.003

DivSimilar|t4 1.433 0.107 13.332 0.000

DivTastes|t1 -1.383 0.110 -12.575 0.000

DivTastes|t2 -0.284 0.088 -3.230 0.001

DivTastes|t3 0.600 0.091 6.608 0.000

DivTastes|t4 1.754 0.121 14.476 0.000

DivVaried|t1 -1.307 0.103 -12.733 0.000

DivVaried|t2 -0.277 0.083 -3.335 0.001

DivVaried|t3 0.695 0.086 8.091 0.000

DivVaried|t4 1.796 0.113 15.867 0.000

NovFamilir|t1 -1.410 0.096 -14.756 0.000

NovFamilir|t2 -0.429 0.084 -5.118 0.000

NovFamilir|t3 0.568 0.086 6.628 0.000

NovFamilir|t4 1.531 0.122 12.552 0.000

NovFewerNw|t1 -1.706 0.104 -16.370 0.000

NovFewerNw|t2 -0.744 0.089 -8.402 0.000

NovFewerNw|t3 0.594 0.087 6.832 0.000

NovFewerNw|t4 1.432 0.115 12.446 0.000

NovSrprsng|t1 -1.771 0.113 -15.633 0.000
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B.1. Confirmatory Factor Analysis

NovSrprsng|t2 -0.610 0.086 -7.110 0.000

NovSrprsng|t3 0.863 0.089 9.745 0.000

NovSrprsng|t4 2.040 0.147 13.895 0.000

NovUnxpctd|t1 -1.268 0.108 -11.731 0.000

NovUnxpctd|t2 -0.422 0.084 -5.004 0.000

NovUnxpctd|t3 0.435 0.084 5.175 0.000

NovUnxpctd|t4 1.590 0.099 16.090 0.000

NovUnthght|t1 -1.479 0.114 -12.992 0.000

NovUnthght|t2 -0.542 0.081 -6.675 0.000

NovUnthght|t3 0.669 0.081 8.221 0.000

NovUnthght|t4 1.631 0.096 16.980 0.000

Variances:

Acc 1.000

Div 1.000

Nov 1.000

Sat 1.000

Und 1.000

AccAppealing 0.170

AccAtTop 0.672

AccBad 0.437

AccBest 0.382

SatFind 0.149

SatMobile 0.152

SatRecommend 0.285

SatSat 0.138

SatValuable 0.219

UndPersonalzd 0.290

UndTaste 0.129

UndTrust 0.111

UndMainstream 0.995

DivMoods 0.297

DivSimilar 0.405

DivTastes 0.372

DivVaried 0.405

NovFamiliar 0.385

NovFewerNew 0.934

NovSurprising 0.794

NovUnexpected 0.407

NovUnthought 0.504
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B.2. Overall SEM

B.2 Overall SEM
> cat(sem.measure$spec)

Sat =~ SatFind + SatMobile + SatRecommend + SatSat + SatValuable

Div =~ DivMoods + DivSimilar + DivTastes + DivVaried

Nov =~ NovUnexpected + NovFamiliar + NovUnthought

PopRatio ~ CondIIUU + CondSVDUU

Div ~ Nov + SimRatio

Nov ~ CondIIUU + CondSVDUU + PopRatio

Sat ~ Nov + Div + PredAccRatio

FirstImpression ~ Sat + Nov

PickedB ~ Sat + FirstImpression

> summary(sem.measure$model)

lavaan (0.5-16) converged normally after 87 iterations

Number of observations 582

Estimator DWLS

Minimum Function Test Statistic 229.520

Degrees of freedom 139

P-value (Chi-square) 0.000

Parameter estimates:

Information Observed

Standard Errors Bootstrap

Number of requested bootstrap draws 1000

Number of successful bootstrap draws 1000

Estimate Std.err Z-value P(>|z|)

Latent variables:

Sat =~

SatFind 0.737 0.029 25.714 0.000

SatMobile 0.736 0.028 25.938 0.000

SatRecommend 0.678 0.027 25.093 0.000

SatSat 0.745 0.028 26.147 0.000

SatValuable 0.717 0.029 24.497 0.000

Div =~
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B.2. Overall SEM

DivMoods 0.806 0.033 24.703 0.000

DivSimilar -0.748 0.033 -22.331 0.000

DivTastes 0.768 0.031 24.819 0.000

DivVaried 0.743 0.034 21.928 0.000

Nov =~

NovUnexpected 0.750 0.038 19.582 0.000

NovFamiliar -0.762 0.031 -24.359 0.000

NovUnthought 0.707 0.036 19.373 0.000

Regressions:

PopRatio ~

CondIIUU 0.223 0.028 7.916 0.000

CondSVDUU 0.189 0.028 6.670 0.000

Div ~

Nov 0.184 0.056 3.290 0.001

SimRatio -51.756 8.558 -6.047 0.000

Nov ~

CondIIUU 0.835 0.153 5.442 0.000

CondSVDUU 1.042 0.149 7.005 0.000

PopRatio 1.309 0.206 6.352 0.000

Sat ~

Nov -0.700 0.073 -9.556 0.000

Div 0.270 0.061 4.396 0.000

PredAccRatio 1.057 0.509 2.078 0.038

FirstImpression ~

Sat 0.542 0.037 14.523 0.000

Nov -0.249 0.038 -6.496 0.000

PickedB ~

Sat 0.664 0.043 15.290 0.000

FirstImpressn 0.093 0.031 2.983 0.003

Intercepts:

PopRatio -0.020 0.019 -1.064 0.287

Sat 0.000

Div 0.000

Nov 0.000

Thresholds:

SatFind|t1 -1.647 0.102 -16.147 0.000

SatFind|t2 -0.528 0.083 -6.365 0.000

236



B.2. Overall SEM

SatFind|t3 0.453 0.086 5.268 0.000

SatFind|t4 1.610 0.127 12.635 0.000

SatMobile|t1 -1.657 0.104 -15.939 0.000

SatMobile|t2 -0.639 0.088 -7.238 0.000

SatMobile|t3 0.649 0.089 7.313 0.000

SatMobile|t4 1.687 0.135 12.523 0.000

SatRecmmnd|t1 -1.769 0.107 -16.552 0.000

SatRecmmnd|t2 -0.717 0.090 -7.940 0.000

SatRecmmnd|t3 0.660 0.091 7.291 0.000

SatRecmmnd|t4 1.776 0.147 12.110 0.000

SatSat|t1 1.700 0.106 16.037 0.000

SatSat|t2 -0.454 0.088 -5.160 0.000

SatSat|t3 0.579 0.089 6.521 0.000

SatSat|t4 1.699 0.133 12.800 0.000

SatValuabl|t1 -1.642 0.104 -15.787 0.000

SatValuabl|t2 -0.526 0.086 -6.143 0.000

SatValuabl|t3 0.472 0.086 5.506 0.000

SatValuabl|t4 1.551 0.121 12.858 0.000

DivMoods|t1 -1.614 0.105 -15.407 0.000

DivMoods|t2 -0.414 0.078 -5.303 0.000

DivMoods|t3 0.603 0.080 7.587 0.000

DivMoods|t4 1.731 0.102 16.905 0.000

DivSimilar|t1 -1.497 0.089 -16.752 0.000

DivSimilar|t2 -0.548 0.082 -6.692 0.000

DivSimilar|t3 0.395 0.082 4.840 0.000

DivSimilar|t4 -1.595 0.114 -13.942 0.000

DivTastes|t1 -1.573 0.107 -14.760 0.000

DivTastes|t2 -0.451 0.080 -5.611 0.000

DivTastes|t3 0.458 0.077 5.926 0.000

DivTastes|t4 1.660 0.097 17.084 0.000

DivVaried|t1 -1.472 0.107 -13.746 0.000

DivVaried|t2 -0.425 0.082 -5.159 0.000

DivVaried|t3 0.572 0.084 6.833 0.000

DivVaried|t4 1.706 0.101 16.938 0.000

NovUnxpctd|t1 -1.269 0.106 -11.988 0.000

NovUnxpctd|t2 -0.423 0.086 -4.948 0.000

NovUnxpctd|t3 0.435 0.093 4.702 0.000

NovUnxpctd|t4 1.591 0.107 14.849 0.000

NovFamilir|t1 -1.477 0.106 -13.976 0.000

NovFamilir|t2 -0.491 0.093 -5.278 0.000
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B.3. Pseudo-experiment SEMs

NovFamilir|t3 -0.477 0.085 -5.592 0.000

NovFamilir|t4 1.497 0.132 11.303 0.000

NovUnthght|t1 -1.467 0.125 -11.742 0.000

NovUnthght|t2 -0.531 0.099 -5.368 0.000

NovUnthght|t3 0.685 0.104 6.573 0.000

NovUnthght|t4 1.651 0.114 14.496 0.000

FrstImprssn|1 -1.492 0.102 -14.607 0.000

FrstImprssn|2 -0.429 0.086 -4.962 0.000

FrstImprssn|3 0.374 0.090 4.160 0.000

FrstImprssn|4 1.417 0.120 11.773 0.000

PickedB|t1 -0.059 0.099 -0.596 0.551

Variances:

SatFind 0.158

SatMobile 0.160

SatRecommend 0.288

SatSat 0.140

SatValuable 0.202

DivMoods 0.325

DivSimilar 0.419

DivTastes 0.388

DivVaried 0.426

NovUnexpected 0.366

NovFamiliar 0.344

NovUnthought 0.436

PopRatio 0.075 0.006

FirstImpressn 0.276

PickedB 0.183

Sat 1.000

Div 1.000

Nov 1.000

B.3 Pseudo-experiment SEMs
SVD vs. User-User
> cat(split.models$svd.uu$spec)

Sat =~ 0.737164412922786 * SatFind

Sat =~ 0.736418615686128 * SatMobile

Sat =~ 0.67807484821091 * SatRecommend
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B.3. Pseudo-experiment SEMs

Sat =~ 0.744863507100357 * SatSat

Sat =~ 0.717453826497938 * SatValuable

Sat ~~ 1 * Sat

Div =~ 0.806142608188462 * DivMoods

Div =~ -0.747928415795148 * DivSimilar

Div =~ 0.76779608551984 * DivTastes

Div =~ 0.743254221458815 * DivVaried

Div ~~ 1 * Div

Nov =~ 0.74962562141753 * NovUnexpected

Nov =~ -0.76228134082548 * NovFamiliar

Nov =~ 0.706649983622846 * NovUnthought

Nov ~~ 1 * Nov

Div ~ CondIIUU # Novelty not significant

Nov ~ CondIIUU

Sat ~ Nov + Div

FirstImpression ~ Sat + Nov

PickedB ~ Sat

> summary(split.models$svd.uu$model)

lavaan (0.5-16) converged normally after 28 iterations

Number of observations 399

Estimator DWLS

Minimum Function Test Statistic 200.840

Degrees of freedom 97

P-value (Chi-square) 0.000

Parameter estimates:

Information Observed

Standard Errors Bootstrap

Number of requested bootstrap draws 1000

Number of successful bootstrap draws 996

Estimate Std.err Z-value P(>|z|)

Latent variables:

Sat =~

SatFind 0.737

SatMobile 0.736
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B.3. Pseudo-experiment SEMs

SatRecommend 0.678

SatSat 0.745

SatValuable 0.717

Div =~

DivMoods 0.806

DivSimilar -0.748

DivTastes 0.768

DivVaried 0.743

Nov =~

NovUnexpected 0.750

NovFamiliar -0.762

NovUnthought 0.707

Regressions:

Div ~

CondIIUU 0.312 0.111 2.821 0.005

Nov ~

CondIIUU 0.953 0.136 6.994 0.000

Sat ~

Nov -0.759 0.023 -32.636 0.000

Div 0.129 0.078 1.642 0.101

FirstImpression ~

Sat 0.514 0.047 10.944 0.000

Nov -0.302 0.077 -3.912 0.000

PickedB ~

Sat 0.730 0.025 29.218 0.000

Covariances:

FirstImpression ~~

PickedB 0.000 0.040 0.000 1.000

Intercepts:

Sat 0.000

Div 0.000

Nov 0.000

Thresholds:

SatFind|t1 -1.496 0.101 -14.752 0.000

SatFind|t2 -0.452 0.083 -5.452 0.000

SatFind|t3 0.492 0.082 5.973 0.000
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B.3. Pseudo-experiment SEMs

SatFind|t4 1.641 0.137 11.975 0.000

SatMobile|t1 -1.535 0.099 -15.450 0.000

SatMobile|t2 -0.598 0.083 -7.195 0.000

SatMobile|t3 0.691 0.083 8.373 0.000

SatMobile|t4 1.631 0.138 11.857 0.000

SatRecmmnd|t1 -1.543 0.109 -14.183 0.000

SatRecmmnd|t2 -0.635 0.086 -7.360 0.000

SatRecmmnd|t3 0.701 0.086 8.112 0.000

SatRecmmnd|t4 1.807 0.150 12.083 0.000

SatSat|t1 -1.549 0.113 -13.693 0.000

SatSat|t2 -0.412 0.084 -4.898 0.000

SatSat|t3 0.580 0.085 6.806 0.000

SatSat|t4 1.719 0.147 11.672 0.000

SatValuabl|t1 -1.529 0.107 -14.268 0.000

SatValuabl|t2 -0.527 0.083 -6.329 0.000

SatValuabl|t3 0.525 0.078 6.699 0.000

SatValuabl|t4 1.535 0.124 12.408 0.000

DivMoods|t1 -1.473 0.108 -13.683 0.000

DivMoods|t2 -0.246 0.079 -3.103 0.002

DivMoods|t3 0.700 0.081 8.684 0.000

DivMoods|t4 1.903 0.129 14.731 0.000

DivSimilar|t1 -1.631 0.103 -15.784 0.000

DivSimilar|t2 -0.647 0.086 -7.548 0.000

DivSimilar|t3 0.217 0.081 2.678 0.007

DivSimilar|t4 1.470 0.112 13.163 0.000

DivTastes|t1 -1.391 0.105 -13.245 0.000

DivTastes|t2 -0.288 0.077 -3.723 0.000

DivTastes|t3 0.606 0.079 7.634 0.000

DivTastes|t4 1.765 0.111 15.912 0.000

DivVaried|t1 -1.300 0.102 -12.774 0.000

DivVaried|t2 -0.268 0.078 -3.419 0.001

DivVaried|t3 0.673 0.084 8.012 0.000

DivVaried|t4 1.822 0.125 14.560 0.000

NovUnxpctd|t1 -1.221 0.106 -11.466 0.000

NovUnxpctd|t2 -0.406 0.080 -5.055 0.000

NovUnxpctd|t3 0.426 0.084 5.095 0.000

NovUnxpctd|t4 1.511 0.104 14.597 0.000

NovFamilir|t1 -1.346 0.090 -14.912 0.000

NovFamilir|t2 -0.435 0.084 -5.157 0.000

NovFamilir|t3 0.543 0.084 6.454 0.000
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B.3. Pseudo-experiment SEMs

NovFamilir|t4 1.536 0.131 11.726 0.000

NovUnthght|t1 -1.438 0.120 -12.000 0.000

NovUnthght|t2 -0.479 0.088 -5.431 0.000

NovUnthght|t3 0.611 0.094 6.521 0.000

NovUnthght|t4 1.557 0.106 14.730 0.000

FrstImprssn|1 -1.357 0.098 -13.855 0.000

FrstImprssn|2 -0.364 0.080 -4.562 0.000

FrstImprssn|3 0.457 0.082 5.578 0.000

FrstImprssn|4 1.406 0.117 12.007 0.000

PickedB|t1 0.025 0.090 0.281 0.779

Variances:

Sat 1.000

Div 1.000

Nov 1.000

SatFind 0.135

SatMobile 0.136

SatRecommend 0.268

SatSat 0.117

SatValuable 0.180

DivMoods 0.350

DivSimilar 0.441

DivTastes 0.410

DivVaried 0.448

NovUnexpected 0.438

NovFamiliar 0.419

NovUnthought 0.501

FirstImpressn 0.254

PickedB 0.152

Item-Item vs. User-User
> cat(split.models$uu.ii$spec)

Sat =~ 0.737164412922786 * SatFind

Sat =~ 0.736418615686128 * SatMobile

Sat =~ 0.67807484821091 * SatRecommend

Sat =~ 0.744863507100357 * SatSat

Sat =~ 0.717453826497938 * SatValuable

Sat ~~ 1 * Sat

Div =~ 0.806142608188462 * DivMoods
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B.3. Pseudo-experiment SEMs

Div =~ -0.747928415795148 * DivSimilar

Div =~ 0.76779608551984 * DivTastes

Div =~ 0.743254221458815 * DivVaried

Div ~~ 1 * Div

Nov =~ 0.74962562141753 * NovUnexpected

Nov =~ -0.76228134082548 * NovFamiliar

Nov =~ 0.706649983622846 * NovUnthought

Nov ~~ 1 * Nov

Div ~ Nov

Nov ~ CondIISVD + HighRatings + CondHighRatings

Sat ~ Nov + Div

FirstImpression ~ Sat + Nov

PickedB ~ Sat

> summary(split.models$uu.ii$model)

lavaan (0.5-16) converged normally after 34 iterations

Number of observations 381

Estimator DWLS

Minimum Function Test Statistic 177.453

Degrees of freedom 123

P-value (Chi-square) 0.001

Parameter estimates:

Information Observed

Standard Errors Bootstrap

Number of requested bootstrap draws 1000

Number of successful bootstrap draws 999

Estimate Std.err Z-value P(>|z|)

Latent variables:

Sat =~

SatFind 0.737

SatMobile 0.736

SatRecommend 0.678

SatSat 0.745

SatValuable 0.717

Div =~
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B.3. Pseudo-experiment SEMs

DivMoods 0.806

DivSimilar -0.748

DivTastes 0.768

DivVaried 0.743

Nov =~

NovUnexpected 0.750

NovFamiliar -0.762

NovUnthought 0.707

Regressions:

Div ~

Nov 0.200 0.081 2.475 0.013

Nov ~

CondIISVD -1.563 0.207 -7.561 0.000

HighRatings -0.459 0.185 -2.482 0.013

CondHighRtngs 0.712 0.258 2.763 0.006

Sat ~

Nov -0.699 0.040 -17.490 0.000

Div 0.391 0.069 5.660 0.000

FirstImpression ~

Sat 0.525 0.037 14.307 0.000

Nov -0.304 0.060 -5.101 0.000

PickedB ~

Sat 0.737 0.023 32.026 0.000

Covariances:

FirstImpression ~~

PickedB 0.000 0.034 0.000 1.000

Intercepts:

Sat 0.000

Div 0.000

Nov 0.000

Thresholds:

SatFind|t1 -1.022 0.129 -7.914 0.000

SatFind|t2 0.199 0.119 1.669 0.095

SatFind|t3 1.246 0.131 9.519 0.000

SatFind|t4 2.359 0.172 13.741 0.000

SatMobile|t1 -1.071 0.137 -7.837 0.000
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B.3. Pseudo-experiment SEMs

SatMobile|t2 0.013 0.128 0.104 0.917

SatMobile|t3 1.388 0.145 9.592 0.000

SatMobile|t4 2.594 0.200 12.957 0.000

SatRecmmnd|t1 -1.174 0.130 -9.051 0.000

SatRecmmnd|t2 0.042 0.115 0.364 0.716

SatRecmmnd|t3 1.490 0.136 10.966 0.000

SatRecmmnd|t4 2.438 0.167 14.605 0.000

SatSat|t1 -1.116 0.130 -8.566 0.000

SatSat|t2 0.190 0.119 1.593 0.111

SatSat|t3 1.316 0.135 9.775 0.000

SatSat|t4 2.381 0.162 14.659 0.000

SatValuabl|t1 -1.131 0.127 -8.933 0.000

SatValuabl|t2 0.044 0.121 0.369 0.712

SatValuabl|t3 1.114 0.132 8.448 0.000

SatValuabl|t4 2.210 0.160 13.856 0.000

DivMoods|t1 -1.906 0.169 -11.309 0.000

DivMoods|t2 -0.787 0.124 -6.348 0.000

DivMoods|t3 0.318 0.122 2.616 0.009

DivMoods|t4 1.462 0.139 10.506 0.000

DivSimilar|t1 -0.923 0.127 -7.276 0.000

DivSimilar|t2 0.094 0.115 0.812 0.417

DivSimilar|t3 1.045 0.118 8.837 0.000

DivSimilar|t4 2.193 0.179 12.244 0.000

DivTastes|t1 -2.086 0.199 -10.492 0.000

DivTastes|t2 -0.832 0.125 -6.672 0.000

DivTastes|t3 0.127 0.118 1.077 0.281

DivTastes|t4 1.294 0.136 9.537 0.000

DivVaried|t1 -2.160 0.181 -11.931 0.000

DivVaried|t2 -1.013 0.120 -8.409 0.000

DivVaried|t3 0.017 0.114 0.151 0.880

DivVaried|t4 1.103 0.127 8.655 0.000

NovUnxpctd|t1 -2.623 0.184 -14.288 0.000

NovUnxpctd|t2 -1.460 0.135 -10.840 0.000

NovUnxpctd|t3 -0.547 0.120 -4.553 0.000

NovUnxpctd|t4 0.598 0.118 5.080 0.000

NovFamilir|t1 -0.431 0.121 -3.574 0.000

NovFamilir|t2 0.670 0.127 5.291 0.000

NovFamilir|t3 1.722 0.144 11.953 0.000

NovFamilir|t4 2.722 0.177 15.402 0.000

NovUnthght|t1 -2.390 0.184 -13.011 0.000
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B.3. Pseudo-experiment SEMs

NovUnthght|t2 -1.415 0.126 -11.206 0.000

NovUnthght|t3 -0.182 0.116 -1.568 0.117

NovUnthght|t4 0.806 0.126 6.389 0.000

FrstImprssn|1 -0.621 0.123 -5.069 0.000

FrstImprssn|2 0.413 0.123 3.344 0.001

FrstImprssn|3 1.294 0.144 8.989 0.000

FrstImprssn|4 2.401 0.163 14.697 0.000

PickedB|t1 0.658 0.143 4.592 0.000

Variances:

Sat 1.000

Div 1.000

Nov 1.000

SatFind 0.164

SatMobile 0.166

SatRecommend 0.293

SatSat 0.147

SatValuable 0.208

DivMoods 0.324

DivSimilar 0.418

DivTastes 0.387

DivVaried 0.425

NovUnexpected 0.438

NovFamiliar 0.419

NovUnthought 0.501

FirstImpressn 0.286

PickedB 0.165

Item-Item vs. SVD
> cat(split.models$ii.svd$spec)

Sat =~ 0.737164412922786 * SatFind

Sat =~ 0.736418615686128 * SatMobile

Sat =~ 0.67807484821091 * SatRecommend

Sat =~ 0.744863507100357 * SatSat

Sat =~ 0.717453826497938 * SatValuable

Sat ~~ 1 * Sat

Div =~ 0.806142608188462 * DivMoods

Div =~ -0.747928415795148 * DivSimilar

Div =~ 0.76779608551984 * DivTastes
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B.3. Pseudo-experiment SEMs

Div =~ 0.743254221458815 * DivVaried

Div ~~ 1 * Div

Nov =~ 0.74962562141753 * NovUnexpected

Nov =~ -0.76228134082548 * NovFamiliar

Nov =~ 0.706649983622846 * NovUnthought

Nov ~~ 1 * Nov

Div ~ CondSVDUU + Nov

Nov ~ HighRatings

Sat ~ Nov + Div

FirstImpression ~ Sat + Nov

PickedB ~ Sat

> summary(split.models$ii.svd$model)

lavaan (0.5-16) converged normally after 28 iterations

Number of observations 384

Estimator DWLS

Minimum Function Test Statistic 167.004

Degrees of freedom 110

P-value (Chi-square) 0.000

Parameter estimates:

Information Observed

Standard Errors Bootstrap

Number of requested bootstrap draws 1000

Number of successful bootstrap draws 924

Estimate Std.err Z-value P(>|z|)

Latent variables:

Sat =~

SatFind 0.737

SatMobile 0.736

SatRecommend 0.678

SatSat 0.745

SatValuable 0.717

Div =~

DivMoods 0.806

DivSimilar -0.748
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B.3. Pseudo-experiment SEMs

DivTastes 0.768

DivVaried 0.743

Nov =~

NovUnexpected 0.750

NovFamiliar -0.762

NovUnthought 0.707

Regressions:

Div ~

CondSVDUU -0.260 0.118 -2.200 0.028

Nov 0.215 0.084 2.568 0.010

Nov ~

HighRatings 0.570 0.129 4.427 0.000

Sat ~

Nov -0.747 0.032 -23.119 0.000

Div 0.254 0.075 3.371 0.001

FirstImpression ~

Sat 0.533 0.043 12.278 0.000

Nov -0.303 0.073 -4.134 0.000

PickedB ~

Sat 0.714 0.031 23.060 0.000

Covariances:

FirstImpression ~~

PickedB 0.000 0.041 0.000 1.000

Intercepts:

Sat 0.000

Div 0.000

Nov 0.000

Thresholds:

SatFind|t1 -2.224 0.189 -11.757 0.000

SatFind|t2 -1.137 0.120 -9.474 0.000

SatFind|t3 -0.203 0.103 -1.967 0.049

SatFind|t4 0.925 0.109 8.449 0.000

SatMobile|t1 -2.358 0.216 -10.909 0.000

SatMobile|t2 -1.252 0.119 -10.551 0.000

SatMobile|t3 -0.078 0.100 -0.785 0.433

SatMobile|t4 0.935 0.111 8.385 0.000
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B.3. Pseudo-experiment SEMs

SatRecmmnd|t1 -2.630 0.214 -12.308 0.000

SatRecmmnd|t2 -1.432 0.125 -11.441 0.000

SatRecmmnd|t3 -0.100 0.105 -0.947 0.344

SatRecmmnd|t4 1.002 0.115 8.691 0.000

SatSat|t1 -2.312 0.194 -11.921 0.000

SatSat|t2 -1.252 0.121 -10.333 0.000

SatSat|t3 -0.271 0.104 -2.605 0.009

SatSat|t4 1.012 0.114 8.846 0.000

SatValuabl|t1 -2.162 0.173 -12.469 0.000

SatValuabl|t2 -0.995 0.116 -8.545 0.000

SatValuabl|t3 -0.131 0.105 -1.244 0.213

SatValuabl|t4 1.039 0.114 9.129 0.000

DivMoods|t1 -1.469 0.119 -12.372 0.000

DivMoods|t2 -0.409 0.103 -3.985 0.000

DivMoods|t3 0.540 0.105 5.159 0.000

DivMoods|t4 1.585 0.135 11.784 0.000

DivSimilar|t1 -1.852 0.159 -11.651 0.000

DivSimilar|t2 -0.697 0.108 -6.454 0.000

DivSimilar|t3 0.263 0.106 2.479 0.013

DivSimilar|t4 1.097 0.112 9.786 0.000

DivTastes|t1 -1.457 0.120 -12.146 0.000

DivTastes|t2 -0.364 0.098 -3.700 0.000

DivTastes|t3 0.439 0.101 4.326 0.000

DivTastes|t4 1.487 0.132 11.240 0.000

DivVaried|t1 -1.491 0.121 -12.369 0.000

DivVaried|t2 -0.424 0.099 -4.289 0.000

DivVaried|t3 0.540 0.102 5.314 0.000

DivVaried|t4 1.512 0.136 11.150 0.000

NovUnxpctd|t1 -0.676 0.106 -6.364 0.000

NovUnxpctd|t2 0.502 0.101 4.998 0.000

NovUnxpctd|t3 1.340 0.116 11.528 0.000

NovUnxpctd|t4 2.076 0.164 12.635 0.000

NovFamilir|t1 -2.581 0.201 -12.833 0.000

NovFamilir|t2 -1.664 0.142 -11.677 0.000

NovFamilir|t3 -0.679 0.115 -5.910 0.000

NovFamilir|t4 0.332 0.112 2.973 0.003

NovUnthght|t1 -0.730 0.104 -7.053 0.000

NovUnthght|t2 0.222 0.103 2.151 0.031

NovUnthght|t3 1.581 0.127 12.498 0.000

NovUnthght|t4 2.473 0.228 10.824 0.000
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B.3. Pseudo-experiment SEMs

FrstImprssn|1 -2.492 0.208 -11.994 0.000

FrstImprssn|2 -1.204 0.121 -9.937 0.000

FrstImprssn|3 -0.540 0.105 -5.124 0.000

FrstImprssn|4 0.570 0.107 5.315 0.000

PickedB|t1 -0.681 0.115 -5.941 0.000

Variances:

Sat 1.000

Div 1.000

Nov 1.000

SatFind 0.161

SatMobile 0.162

SatRecommend 0.290

SatSat 0.143

SatValuable 0.205

DivMoods 0.320

DivSimilar 0.415

DivTastes 0.383

DivVaried 0.422

NovUnexpected 0.438

NovFamiliar 0.419

NovUnthought 0.501

FirstImpressn 0.247

PickedB 0.214
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