Education
- Ph.D (2014)
- Computer Science, University of Minnesota, Minneapolis, MN.
- B.S. (2007)
- Computer Engineering, Iowa State University, Ames, IA.
Appointments
- 2023–present
- Assistant Professor, Dept. of Information Science, Drexel University
- 2022–2023
- Associate Professor, Dept. of Computer Science, Boise State University
- 2016–2022
- Assistant Professor, Dept. of Computer Science, Boise State University
- 2014–2016
- Assistant Professor, Dept. of Computer Science, Texas State University
Research
Funding
- 2023–2025: NSF 22-32553: Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation ($1.4M, my share $150K).
- 2018–2023: NSF 17-51278: CAREER: User-Based Simulation Methods for Quantifying Sources of Error and Bias in Recommender Systems. ($514,081, including REU supplements).
- 2017: $19K Boise State College of Education Civility Grant LITERATE: Locating Informational Texts for Engaging Readers And Teaching Equitably (co-PI; with PI Katherine Wright & co-PI Sole Pera)
- 2014: Texas State University Research Enhancement Program (competitive internal grant, $8K)
Selected Publications
Author formatting key:
, , .2023. Much Ado About Gender: Current Practices and Future Recommendations for Appropriate Gender-Aware Information Access. In Proceedings of the 2023 Conference on Human Information Interaction and Retrieval (CHIIR ’23). Proc. CHIIR ’23. DOI 10.1145/3576840.3578316. arXiv:2301.04780. NSF PAR 10423693. Acceptance rate: 39.4%. Cited 3 times. Cited 4 times.
, , , and .2022. Fairness in Information Access Systems. Foundations and Trends® in Information Retrieval 16(1–2) (July 11th, 2022), 1–177. FnT IR 16(1–2) (July 11th, 2022). DOI 10.1561/1500000079. arXiv:2105.05779 [cs.IR]. NSF PAR 10347630. Impact factor: 8. Cited 90 times. Cited 51 times.
, , , and .2022. Measuring Fairness in Ranked Results: An Analytical and Empirical Comparison. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). pp. 726–736. Proc. SIGIR ’22. DOI 10.1145/3477495.3532018. NSF PAR 10329880. Acceptance rate: 20%. Cited 24 times. Cited 20 times.
and .2021. Exploring Author Gender in Book Rating and Recommendation. User Modeling and User-Adapted Interaction 31(3) (February 4th, 2021), 377–420. UMUAI 31(3) (February 4th, 2021). DOI 10.1007/s11257-020-09284-2. arXiv:1808.07586v2. NSF PAR 10218853. Impact factor: 4.412. Cited 145 times. Cited 24 times (shared with RecSys18◊).
and .2021. Estimation of Fair Ranking Metrics with Incomplete Judgments. In Proceedings of The Web Conference 2021 (TheWebConf 2021). ACM. Proc. TheWebConf 2021. DOI 10.1145/3442381.3450080. arXiv:2108.05152. NSF PAR 10237411. Acceptance rate: 21%. Cited 30 times. Cited 27 times.
, , , , , and .2020. Evaluating Stochastic Rankings with Expected Exposure. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20). ACM, pp. 275–284. Proc. CIKM ’20. DOI 10.1145/3340531.3411962. arXiv:2004.13157 [cs.IR]. NSF PAR 10199451. Acceptance rate: 20%. Nominated for Best Long Paper. Cited 137 times. Cited 127 times.
, , , , and .2020. LensKit for Python: Next-Generation Software for Recommender Systems Experiments. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20, Resource track). ACM, pp. 2999–3006. Proc. CIKM ’20 (Resource track). DOI 10.1145/3340531.3412778. arXiv:1809.03125 [cs.IR]. NSF PAR 10199450. No acceptance rate reported. Cited 72 times. Cited 50 times.
.2020. Enhancing Classroom Instruction with Online News. Aslib Journal of Information Management 72(5) (June 15th, 2020), 725–744. AJIM 72(5) (June 15th, 2020). DOI 10.1108/AJIM-11-2019-0309. Impact factor: 1.903. Cited 12 times. Cited 9 times.
, , and .2018. All The Cool Kids, How Do They Fit In?: Popularity and Demographic Biases in Recommender Evaluation and Effectiveness. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency (FAT* 2018). PMLR, Proceedings of Machine Learning Research 81:172–186. Proc. FAT* 2018. Acceptance rate: 24%. Cited 216 times. Cited 177 times.
, , , , , , and .2018. Privacy for All: Ensuring Fair and Equitable Privacy Protections. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency (FAT* 2018). PMLR, Proceedings of Machine Learning Research 81:35–47. Proc. FAT* 2018. Acceptance rate: 24%. Cited 80 times. Cited 67 times.
, , and .2016. Behaviorism is Not Enough: Better Recommendations through Listening to Users. In Proceedings of the Tenth ACM Conference on Recommender Systems (RecSys ’16, Past, Present, and Future track). ACM. Proc. RecSys ’16 (Past, Present, and Future track). DOI 10.1145/2959100.2959179. Acceptance rate: 36%. Cited 107 times. Cited 86 times.
and .2015. Letting Users Choose Recommender Algorithms: An Experimental Study. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys ’15). ACM. Proc. RecSys ’15. DOI 10.1145/2792838.2800195. Acceptance rate: 21%. Cited 120 times. Cited 97 times.
, , , and .2014. User Perception of Differences in Recommender Algorithms. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM. Proc. RecSys ’14. DOI 10.1145/2645710.2645737. Acceptance rate: 23%. Cited 251 times. Cited 171 times.
, , , and .2015. Teaching Recommender Systems at Large Scale: Evaluation and Lessons Learned from a Hybrid MOOC. Transactions on Computer-Human Interaction 22(2) (April 1st, 2015). DOI 10.1145/2728171. Impact factor: 1.293. Cited 110 times (shared with L@S14◊). Cited 23 times.
, , , , and .2011. Rethinking The Recommender Research Ecosystem: Reproducibility, Openness, and LensKit. In Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ’11). ACM, pp. 133–140. Proc. RecSys ’11. DOI 10.1145/2043932.2043958. Acceptance rate: 27% (20% for oral presentation, which this received). Cited 233 times. Cited 195 times.
, , , and .2011. Collaborative Filtering Recommender Systems. Foundations and Trends® in Human-Computer Interaction 4(2) (February 1st, 2011), 81–173. FnT HCI 4(2) (February 1st, 2011). DOI 10.1561/1100000009. Cited 1574 times. Cited 636 times.
, , and .2011. Searching for Software Learning Resources Using Application Context. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST ’11). ACM, pp. 195–204. Proc. UIST ’11. DOI 10.1145/2047196.2047220. Acceptance rate: 25%. Cited 53 times. Cited 49 times.
, , , , and .Teaching
- BSU
- Intro to Data Science, recommender systems, databases, ethics
- Coursera
- Recommender Systems MOOC
Professional Service & Memberships
- Senior Member, Association for Computing Machinery
- Editorial board, Foundations and Trends in Information Retrieval
- Co-organizer, TREC 2019–2021 Track on Fairness in Information Retrieval
- ACM Conference on Recommender Systems (Program Co-chair 2022, General Co-chair 2018, Steering Committee & SPC member)
- Conference on Fairness, Accountability, and Transparency (FAccT) (Executive Committee 2020–2023, Steering Committee 2017–2023, Network Co-chair, PC 2017–present)
- Organizer, FATREC Workshop on Responsible Recommendation at RecSys 2017/2018/2020
- Senior PC member for RecSys & WWW; regular PC for SIGIR, FAccT, UMAP
- Reviewer for multiple journals, incl. TOIS, TWEB, TKDD, TIIS, TDSC, TKDE, PLOS ONE, and UMUAI