Michael D. Ekstrand, Ph.D

Dept. of Computer Science
Boise State University
1910 University Drive
Boise, ID 83725-2055

Education

Ph.D (2014)
Computer Science, University of Minnesota, Minneapolis, MN. Advisers: John T. Riedl and Joseph A. Konstan
B.S. (2007)
Computer Engineering (With Distinction), Iowa State University, Ames, IA.

Appointments

2016–present
Assistant Professor, Dept. of Computer Science, Boise State University
Co-founder, People and Information Research Team (PIReT)
2014–2016
Assistant Professor, Dept. of Computer Science, Texas State University
2008–2014
Graduate Research Assistant, GroupLens Research, Dept. of Computer Science, University of Minnesota
Summer 2010
Research Intern, Autodesk Research, Toronto, CA

Teaching

Selected Publications

Author formatting key: myself, advised student, other Boise State student.

Michael D. Ekstrand, Mucun Tian, Mohammed R. Imran Kazi, Hoda Mehrpouyan, and Daniel Kluver. 2018. Exploring Author Gender in Book Rating and Recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM. DOI 10.1145/3240323.3240373. arXiv:1808.07586v1 [cs.IR]. Acceptance rate: 17.5%.

Michael D. Ekstrand. 2018. The LKPY Package for Recommender Systems Experiments: Next-Generation Tools and Lessons Learned from the LensKit Project. Computer Science Faculty Publications and Presentations 147. Boise State University. Presented at the REVEAL 2018 Workshop on Offline Evaluation for Recommender Systems, a workshop at RecSys 2018. DOI 10.18122/cs_facpubs/147/boisestate. arXiv:1809.03125 [cs.IR].

Michael D. Ekstrand, Mucun Tian, Ion Madrazo Azpiazu, Jennifer D. Ekstrand, Oghenemaro Anuyah, David McNeill, and Maria Soledad Pera. 2018. All The Cool Kids, How Do They Fit In?: Popularity and Demographic Biases in Recommender Evaluation and Effectiveness. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency (FAT* 2018). PMLR, Proceedings of Machine Learning Research 81:172–186. Acceptance rate: 24%. Cited 2 times.

Michael D. Ekstrand, Rezvan Joshaghani, and Hoda Mehrpouyan. 2018. Privacy for All: Ensuring Fair and Equitable Privacy Protections. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency (FAT* 2018). PMLR, Proceedings of Machine Learning Research 81:172–186. Acceptance rate: 24%. Cited 1 times.

Michael D. Ekstrand and Vaibhav Mahant. 2017. Sturgeon and the Cool Kids: Problems with Random Decoys for Top-N Recommender Evaluation. In Proceedings of the 30th International Florida Artificial Intelligence Research Society Conference. AAAI, pp. 639–644.

Michael D. Ekstrand and Martijn C. Willemsen. 2016. Behaviorism is Not Enough: Better Recommendations through Listening to Users. In Proceedings of the Tenth ACM Conference on Recommender Systems (RecSys ’16). ACM. DOI 10.1145/2959100.2959179. Acceptance rate: 36% (Past, Present, and Future track). Cited 10 times.

Michael D. Ekstrand, Daniel Kluver, F. Maxwell Harper, and Joseph A. Konstan. 2015. Letting Users Choose Recommender Algorithms: An Experimental Study. In Proceedings of the 9th ACM Conference on Recommender Systems (RecSys ’15). ACM. DOI 10.1145/2792838.2800195. Acceptance rate: 21%. Cited 30 times.

Michael D. Ekstrand and Michael Ludwig. 2016. Dependency Injection with Static Analysis and Context-Aware Policy. Journal of Object Technology 15(1) (February 2016), 1:1–31. DOI 10.5381/jot.2016.15.5.a1. Cited 1 times.

Michael D. Ekstrand, F. Maxwell Harper, Martijn C. Willemsen, and Joseph A. Konstan. 2014. User Perception of Differences in Recommender Algorithms. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM. DOI 10.1145/2645710.2645737. Acceptance rate: 23%. Cited 88 times.

Joseph A. Konstan, J.D. Walker, D. Christopher Brooks, Keith Brown, and Michael D. Ekstrand. 2015. Teaching Recommender Systems at Large Scale: Evaluation and Lessons Learned from a Hybrid MOOC. Transactions on Computer-Human Interaction 22(2) (April 2015). DOI 10.1145/2728171. Cited 13 times.

Tien T. Nguyen, Daniel Kluver, Ting-Yu Wang, Pik-Mai Hui, Michael D. Ekstrand, Martijn C. Willemsen, and John Riedl. 2013. Rating Support Interfaces to Improve User Experience and Recommender Accuracy. In Proceedings of the 7th ACM Conference on Recommender Systems (RecSys ’13). ACM. DOI 10.1145/2507157.2507188. Acceptance rate: 24%. Cited 25 times.

Daniel Kluver, Tien T. Nguyen, Michael Ekstrand, Shilad Sen, and John Riedl. 2012. How Many Bits per Rating?. In Proceedings of the Sixth ACM Conference on Recommender Systems (RecSys ’12). ACM, pp. 99–106. DOI 10.1145/2365952.2365974. Acceptance rate: 20%. Cited 17 times.

Michael D. Ekstrand, Michael Ludwig, Joseph A. Konstan, and John T. Riedl. 2011. Rethinking The Recommender Research Ecosystem: Reproducibility, Openness, and LensKit. In Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ’11). ACM, pp. 133–140. DOI 10.1145/2043932.2043958. Acceptance rate: 27% (20% for oral presentation, which this received). Cited 157 times.

Michael D. Ekstrand, John T. Riedl, and Joseph A. Konstan. 2011. Collaborative Filtering Recommender Systems. Foundations and Trends® in Human-Computer Interaction 4(2) (February 2011), 81–173. DOI 10.1561/1100000009. Cited 749 times.

Michael Ekstrand, Wei Li, Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2011. Searching for Software Learning Resources Using Application Context. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST ’11). ACM, pp. 195–204. DOI 10.1145/2047196.2047220. Acceptance rate: 25%. Cited 25 times.

Michael D. Ekstrand, Praveen Kannan, James A. Stempter, John T. Butler, Joseph A. Konstan, and John T. Riedl. 2010. Automatically Building Research Reading Lists. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys ’10). ACM, pp. 159–166. DOI 10.1145/1864708.1864740. Acceptance rate: 19%. Cited 73 times.

Research Funding

Professional Service